

(Subset construction) Constructing a DFA from an NFA.¹

Input. An NFA N .

Output. A DFA D accepting the same language.

Method. Our algorithm constructs a transition table D_{tran} for D . Each DFA state is a set of NFA states and we construct D_{tran} so that D will simulate “in parallel” all possible moves N can make on a given input string.

We use the operations in Table 1 to keep track of sets of NFA states (s represents an NFA state and T a set of NFA states).

Operations	Description
$\bar{\epsilon}$ -closure(s)	Set of NFA states reachable from NFA state s on $\bar{\epsilon}$ -transitions alone.
$\bar{\epsilon}$ -closure(T)	Set of NFA states reachable from some NFA state s in T on $\bar{\epsilon}$ -transitions alone.
move(T, a)	Set of NFA states to which there is a transition on input symbol a from some NFA state s in T .

Table 1. Operations on NFA states

Before it sees the first input symbol, N can be in any of the states in the set $\in -closure(s_0)$, where s_0 is the start state of N . Suppose that exactly the states in set T are reachable from s_0 on a given sequence of input symbols, and let a be the next input symbol. On seeing a , N can move to any of the states in the set $move(T, a)$. When we allow for \in -transitions, N can be in any of the states in $\in -closure(move(T, a))$, after seeing the a .

```

initially  $\in -closure(s_0)$  is the only state in  $D_{states}$  and it is unmarked;
while there is an unmarked state  $T$  in  $D_{states}$  do
    mark  $T$  ;
    for each input symbol  $a$  do
         $U := \in -closure(move(T, a))$ ;
        if  $U$  is not in  $D_{states}$  then
            add  $U$  as an unmarked state to  $D_{states}$  ;
             $D_{tran}[T, a] := U$ 
        end for
    end while

```

¹ Excepted from Aho, Sethi, and Ullman *Compilers, principles, techniques, and tools*. Addison-Wesley, 1986, ISBN 0-201-10088-6

Example: Figure 1 shows an NFA N accepting the language $(a \mid b)^* abb$.

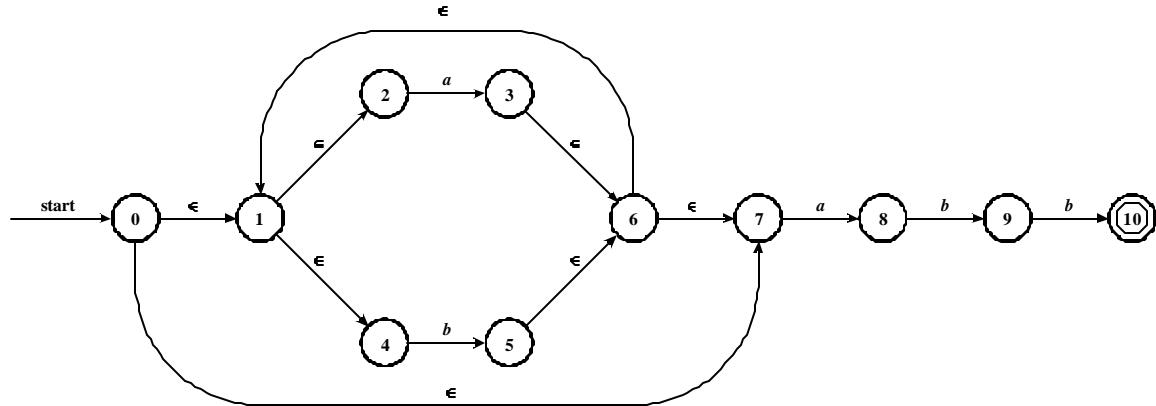


Figure 1. NFA N accepting the language $(a \mid b)^* abb$

$$A = \epsilon\text{-closure}(0) = \{0, 1, 2, 4, 7\}$$

STATE	INPUT SYMBOL	
	a	b
A		

$$B = \epsilon\text{-closure}(\text{move}(A, a))$$

$$B = \epsilon\text{-closure}(\text{move}(\{0, 1, 2, 4, 7\}, a))$$

$$B = \epsilon\text{-closure}(\{3, 8\})$$

$$B = \{1, 2, 3, 4, 6, 7, 8\}$$

$$D\text{tran}[A, a] = B$$

STATE	INPUT SYMBOL	
	a	b
A	B	

$$C = \epsilon\text{-closure}(\text{move}(A, b))$$

$$C = \epsilon\text{-closure}(\text{move}(\{0, 1, 2, 4, 7\}, b))$$

$$C = \epsilon\text{-closure}(\{5\})$$

$$C = \{1, 2, 4, 5, 6, 7\}$$

$$D\text{tran}[A, b] = C$$

STATE	INPUT SYMBOL	
	a	b
A	B	C

$$D = \epsilon\text{-closure}(\text{move}(B, a))$$

$$D = \epsilon\text{-closure}(\text{move}(\{1, 2, 3, 4, 6, 7, 8\}, a))$$

$$D = \epsilon\text{-closure}(\{3, 8\})$$

$$D = B$$

$$D\text{tran}[B, a] = B$$

STATE	INPUT SYMBOL	
	a	b
A	B	C
B	B	

$D = \text{closure}(\text{move}(B, b))$

$D = \text{closure}(\text{move}(\{1,2,3,4,6,7,8\}, b))$

$D = \text{closure}(\{5,9\})$

$D = \{1,2,4,5,6,7,9\}$

$D_{\text{tran}}[B, b] = D$

STATE	INPUT SYMBOL	
	a	b
A	B	C
B	B	D

$E = \text{closure}(\text{move}(C, a))$

$E = \text{closure}(\text{move}(\{1,2,3,4,5,6,7\}, a))$

$E = \text{closure}(\{3,8\})$

$E = B$

$D_{\text{tran}}[C, a] = B$

STATE	INPUT SYMBOL	
	a	b
A	B	C
B	B	D
C	B	

$E = \text{closure}(\text{move}(C, b))$

$E = \text{closure}(\text{move}(\{1,2,4,5,6,7\}, b))$

$E = \text{closure}(\{5\})$

$E = C$

$D_{\text{tran}}[C, b] = C$

STATE	INPUT SYMBOL	
	a	b
A	B	C
B	B	D
C	B	C

$E = \text{closure}(\text{move}(D, a))$

$E = \text{closure}(\text{move}(\{1,2,4,5,6,7,9\}, a))$

$E = \text{closure}(\{3,8\})$

$E = B$

$D_{\text{tran}}[D, a] = B$

STATE	INPUT SYMBOL	
	a	b
A	B	C
B	B	D
C	B	
D	B	C

$E = \text{closure}(\text{move}(D, b))$
 $E = \text{closure}(\text{move}(\{1, 2, 4, 5, 6, 7, 9\}, b))$
 $E = \text{closure}(\{5, 10\})$
 $E = \{1, 2, 4, 5, 6, 7, 10\}$
 $D\text{tran}[D, b] = E$

STATE	INPUT SYMBOL	
	a	b
A	B	C
B	B	D
C	B	C
D	B	E

$F = \text{closure}(\text{move}(E, a))$
 $F = \text{closure}(\text{move}(\{1, 2, 4, 5, 6, 7, 10\}, a))$
 $F = \text{closure}(\{3, 8\})$
 $F = B$
 $D\text{tran}[E, a] = B$

STATE	INPUT SYMBOL	
	a	b
A	B	C
B	B	D
C	B	C
D	B	E
E	B	

$F = \text{closure}(\text{move}(E, b))$
 $F = \text{closure}(\text{move}(\{1, 2, 4, 5, 6, 7, 10\}, b))$
 $F = \text{closure}(\{5\})$
 $F = C$
 $D\text{tran}[E, b] = C$

STATE	INPUT SYMBOL	
	a	b
A	B	C
B	B	D
C	B	C
D	B	E
E	B	C

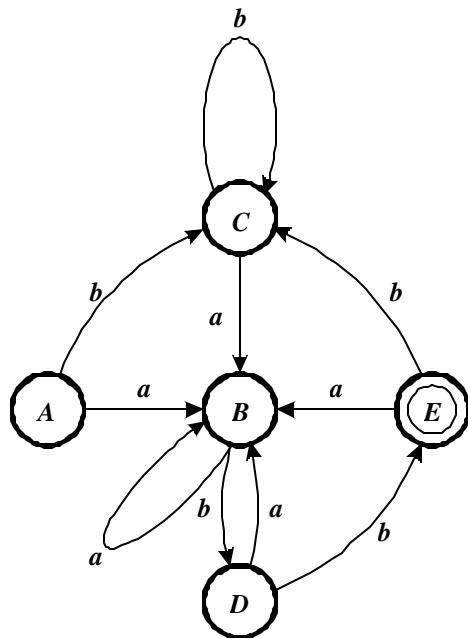


Figure 2. DFA accepting $(a \mid b)^* abb$.