
Data Structures Lecture 24
CS 3613 Overview of Lex

 1

1. Structure of a Lex Specification

… definition section
%%
… rules section
%%
… user subroutines

2. Definition Section
2.1. literal block

% {
… C and C++ comments, directives, and declarations
% }

2.2. definitions
A definition takes the form:

NAME expression

The name can contain letters, digits, and underscores, and must not start with a digit.

In the rules section, patterns may include references to substitutions with the name in braces, for
example, “{NAME}”. The expression corresponding to the name is substituted literally into
pattern. For example.

Figure 1. A lex specification that containing a definition.

3. Rules Section

A rule is a pattern followed by C or C++ code. For example:

Figure 2. A lex specification that discards white space.

3.1. Regular Expression Syntax
3.1.1. Metacharacters
Character Description

. Matches any single character except the newline character ‘\n’.

%%
[\t\n]+ ;
%%

DIGIT [0-9]
…
%%
{DIGIT}+ process_integer();
{DIGIT}+\.{DIGIT}* |
\.{DIGIT}+ process_real();

Data Structures Lecture 24
CS 3613 Overview of Lex

 2

Character Description

[] Match any one of the characters with the brackets. A range of characters is
indicated with the “-“ (dash), e.g., “[0-9]” for any of the 10 digits. If the first
character after the open bracket is a dash or a close bracket, it is not interpreted as
a metacharacter If the first character is a circumflex “^” it changes the meaning to
match any character except those within the brackets. (Such a character class will
match a newline unless you explicitly exclude it.) Other metacharacters have no
special meaning within square brackets except that C escape sequences starting
with “\” are recognized.

* Matches zero or more of the preceding expression. For example, the pattern

a.*z

matches any string that starts with “a” and ends with “z”, such as “az”, “abz”, or
“alcatraz”.

+ Matches one or more occurrence of the preceding regular expression. For
example,

x+

matches “x”, “xxx”, or “xxxxx”, but not an empty string, and

(ab)+

matches “ab”, “abab”, “ababab”, and so forth.

? Matches zero of one occurrence of the preceding regular expression. For example:

-?[0-9]+

indicates a whole number with an optional leading unary minus sign.

{} A single number “{n}” means n repetitions of the preceding pattern, e.g.,

[A-Z]{3}

matches any three upper case letters.

If the braces contain two numbers separated by a comma, “{n,m}”, they are a
minimum and maximum number of repetitions of the preceding pattern. For
example:

A{1,3}

matches one to three occurrences of the letter “A”. If the second number is
missing, it is taken to be infinite, so “{1,}” means the same as “+” and “{0,}”
means the same as “*”.

\ If the following character is a lowercase letter, then it is a C escape sequence such
as “\t” for tab. Some implementations also allow octal and hex characters in the
form “\123” and “\x3f”. Otherwise “\” quotes the following character, so”*”
matches an asterisk.

Data Structures Lecture 24
CS 3613 Overview of Lex

 3

Character Description

() Group a series of regular expressions together. Each of the “*”, “+”, and “[]”
effects only the expression immediately to its left, and “|” normally affects
everything to its left and right. Parentheses can change this, for exa mple:

(ab|cd)?ef

matches “abef”, “cdef”, or just “|”

| Match either the preceding regular expression or the subsequent regular
expression. For example:

twelve|12

matches either “twelve ” or “12”

“…” Match everything withing the quotation marks literally. Metacharacters other than
“\” lose their meaning. For example:

“/*”

matches the two characters

/ Matches the preceding regular expression but only if followed by the following
regular expression. For example:

0/1

matches “0” in the string “01” but does not match anything in the strings “0” or
“02”. Only one slash is permitted per pattern, and a pattern cannot contain both a
slash and a trailing “$”

^ As the first character of a regular expression, it matches the beginning of a line; it
is also used for negation within square brackets. Otherwise not special.

$ As the last character of a regular expression, it matches the end of a line –
otherwise it is not special. The “$” has the same meaning as “/\n” when at the end
of an expression.

<> A name of list of names in angle brackets at the beginning of a pattern makes that
pattern apply only in the given start states.

Data Structures Lecture 24
CS 3613 Overview of Lex

 4

4. User Subroutines
User subroutines are C and C++ functions. Function prototypes must appear before their
implementations in this section.

Figure 2. A lex specification containing a user subroutine.

% {
#include <string>
#define ID 1
#define READ 2
#define WRITE 3
#define BEGAN 4
#define END 5
int TokenMgr(int t);
% }
%%
[\t\n]+ ;
[a-z]+ return TokenMgr(ID);
%%
int TokenMgr(int t)
{ string rw[]={“”,””,”read”,”write”,”begin”,”end”};
 for (int k=2;k<6;k++) if ((string)yytext==rw[k]) return k;
 return t ;
}

