

Figure 1. An unweighted directed graph G

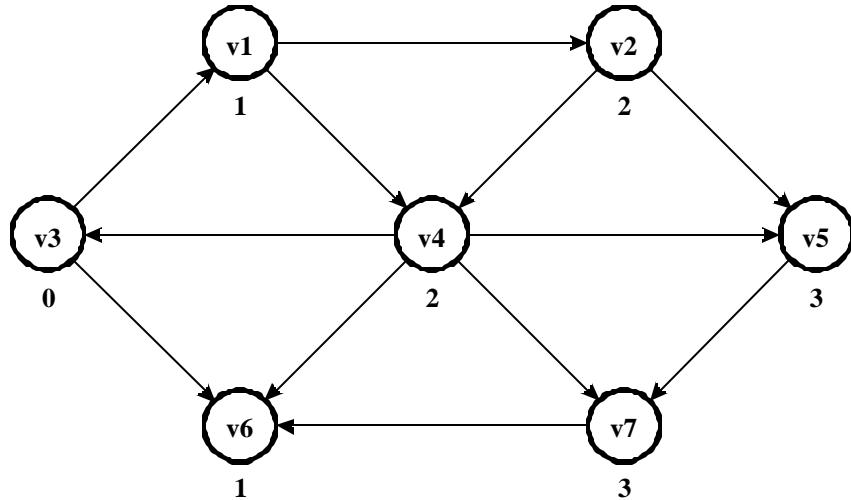


Figure 2. Final shortest paths from vertex v_3 to every other vertex

v	After initialization			v ₃ dequeued			v ₁ dequeued		
	known	dist	path	known	dist	path	known	dist	path
v ₁	no	BIG	-	no	1	v ₃	yes	1	v ₃
v ₂	no	BIG	-	no	BIG	-	no	2	v ₁
v ₃	no	0	-	yes	0	0	yes	0	0
v ₄	no	BIG	-	no	BIG	-	no	2	v ₁
v ₅	no	BIG	-	no	BIG	-	no	BIG	-
v ₆	no	BIG	-	no	1	v ₃	no	1	v ₃
v ₇	no	BIG	-	no	BIG	-	no	BIG	-
q	v ₃			v ₁ v ₆			v ₆ v ₂ v ₄		
v	v ₆ dequeued			v ₂ dequeued			v ₄ dequeued		
	known	dist	path	known	dist	path	known	dist	path
v ₁	yes	1	v ₃	yes	1	v ₃	yes	1	v ₃
v ₂	no	2	v ₁	yes	2	v ₁	yes	2	v ₁
v ₃	yes	0	0	yes	0	0	yes	0	0
v ₄	no	2	v ₁	no	2	v ₁	yes	2	v ₁
v ₅	no	BIG	-	no	3	v ₂	no	3	v ₂
v ₆	yes	1	v ₃	yes	1	v ₃	yes	1	v ₃
v ₇	no	BIG	-	no	BIG	-	no	3	v ₄
q	v ₂ v ₄			v ₄ v ₅			v ₅ v ₇		
v	v ₅ dequeued			v ₇ dequeued					
	known	dist	path	known	dist	path			
v ₁	yes	1	v ₃	yes	1	v ₃			
v ₂	yes	2	v ₁	yes	2	v ₁			
v ₃	yes	0	0	yes	0	0			
v ₄	yes	2	v ₁	yes	2	v ₁			
v ₅	yes	3	v ₂	yes	3	v ₂			
v ₆	yes	1	v ₃	yes	1	v ₃			
v ₇	no	3	v ₄	yes	3	v ₄			
q	v ₇			empty					

Unweighted shortest path algorithm:

1. Create queue Q , allocating as many entries in the queue as there are vertices in the graph.
2. Initialize table T making the input vertex V the origin.
3. Insert origin vertex V_0 into the queue.
4. **While** queue Q is not empty
 - 4.1. Remove vertex V from the queue.
 - 4.2. Mark vertex V as "known."
 - 4.3. For each vertex W adjacent to V do
 - 4.3.1. **If** the distance to vertex W is undefined (*BIG*) then
 - 4.3.1.1. Add one to the distance to vertex V and assign that value to vertex W in table T .
 - 4.3.1.2. Assign vertex V to the path to vertex W .
 - 4.3.1.3. Insert vertex W into the queue.
5. **end while**