
Data Structures Lecture 20
CS 3613 Separate Chaining Implementation

 1

//---
///class Hash defines the interface for Separate Chaining and Open Addressing Hash
//implementations
//---
class Hash {
protected:

unsigned int Index(int size,string key); //Map the key to an integer index
public:

virtual void Insert(string key)=0; //Insert a key
virtual void Remove(string key)=0; //Remove a key
virtual bool IsMember(string key)=0; //Is key in the table
virtual bool IsFull(void)=0; //Is the table full?
virtual bool IsEmpty(void)=0; //Is the table empty?
virtual int KeyIndex(string key)=0; //Return the integer index for key

};
unsigned int Hash::Index(int size,string key)
{ unsigned int ndx=0;
 for (i nt i=0;i<key.length();i++) ndx=(ndx<<4)^(int)key[i];
 return ndx% size;
}

Data Structures Lecture 20
CS 3613 Separate Chaining Implementation

 2

/---
//class List defines the attributes of a list of strings.
//The list is implemented as an array of strings stored in lexicographic (alphabetic) order.
//The list contains a sentinel. L[0]=””;
//---
class List {
 int size; //Number of available elements
 int count; //Number of occupied elements
 string* L; //Points to an array of strings
public:
 List(int sz=10) :size(sz),count(0) //Constructor

{ L=new string[size];
 L[0]="";

}
 ~List(); //Destructor
 class ListFullException {}; //Thrown when the list is full
 class ListEmptyException {}; //Thrown when the list is empty
 bool IsFull(void); //Determines if the list is full
 bool IsEmpty(void); //Determines if the list is empty
 int Insert(string key) //Inserts a key in the list
 { if (IsMember(key)) return 0;
 if (IsFull()) throw ListFullException();
 int i;
 for (i=++count;key<L[i-1];i--) L[i]=L[i-1];
 L[i]=key;
 return 1;

}
 int Remove(string key) //Removes a key from the list
 { int i=Index(key);
 if (i==0) return 0;
 for(;i<count;i++) L[i]=L[i+1];
 count--;
 return -1;

}
 bool IsMember(string key); //Determines if the key is a member of the list
 int Index(string key); //Returns the index of the key
 //Implemented as a binary search
 //or zero if the key is not a member of the list
 int Count(void); //Returns the number of keys on the list
};

Data Structures Lecture 20
CS 3613 Separate Chaining Implementation

 3

/---
//class SHash defines the attributes of a Hash Table where collisions are resolved by putting them on
//a separate chain. A separate chain is implement as a list.
//---
class SHash : public Hash {
 int size; //Number of available entries in the table
 int count; //Number of occupied entries in the table
 List* L; //Points to a array of collision resolution lists.
public:
 SHash(int sz=37) //Constructor

:size(sz),count(0){ L=new List[size];}
 ~SHash(); //Destructor
 void Insert(string key); //Inserts a key into the table
 { unsigned int ndx=Index(size,key);
 int n=L[ndx].Count();
 count+=L[ndx].Insert(key);

}
void Remove(string key); //Removes a key from the table

 bool IsMember(string key); //Determines if parameter key is in the table
 bool IsFull(void); //Determines if the table is full.
 bool IsEmpty(void); //Determines if the table is empty.
 int KeyIndex(string key); //Returns the index of the collision resolution
 //chain for parameter key
 int CollisionLength(string key); //Returns the length of the collision resolution
 //chain for parameter key
};

