
Data Structures Lecture 19
CS 3613 Open Addressing Implementation

 1

//---
///class Hash defines the interface for Separate Chaining and Open Addressing Hash
//implementations
//---
class Hash {
protected:

unsigned int Index(int size,string key); //Map the key to an integer index
public:

virtual void Insert(string key)=0; //Insert a key
virtual void Remove(string key)=0; //Remove a key
virtual bool IsMember(string key)=0; //Is key in the table
virtual bool IsFull(void)=0; //Is the table full?
virtual bool IsEmpty(void)=0; //Is the table empty?
virtual int KeyIndex(string key)=0; //Return the integer index for key

};
unsigned int Hash::Index(int size,string key)
{ unsigned int ndx=0;
 for (i nt i=0;i<key.length();i++) ndx=(ndx<<4)^(int)key[i];
 return ndx% size;
}

Data Structures Lecture 19
CS 3613 Open Addressing Implementation

 2

/---
//Class OHash defines the interface for open addressing
/---
enum State {available,occupied,removed};
//---
//implementation
//---
class OHash : public Hash {

int size; //Number of available entries in the table
int count; //Number of occupied entries in the table
//--
//struct Entry contains the attributes of an entry in an open addressing hash table
//---
struct Entry {

State state;
string key;
Entry():state(available),key("") {}; //Default constructor for the array allocation
bool Occupied(void); //Determine if the entry is occupied
bool InUse(void); //Determine if the entry is either occupied or

//removed
};
Entry* L; //Points to an array of entries

public:
 //Constructor

OHash(int sz=37):size(sz),count(0){L=new Entry[size];}
~OHash(); //Destructor
void Insert(string key) //Inserts a key into the table
{ if (IsFull()) throw OHashFullException();
 unsigned int ndx;
 for(ndx=Index(size,key);L[ndx].Occupied();ndx=(ndx+1)% size) {
 if (key==L[ndx].key) return;
 }
 L[ndx].state=occupied;
 L[ndx].key=key;
 count++;
}
void Remove(string key); //Removes a key from the table
bool IsMember(string key); //Determines if parameter key is in the table
bool IsFull(void); //Determines if the table is full.
bool IsEmpty(void); //Determines if the table is empty.
int KeyIndex(string key); //Returns the index of parameter key
class OHashFullException{};

};

