
Data Structures Lecture 18
CS 3613 Hash ing

 1

1. Hashing

Hashing is a mechanism that implements member functions Insert, Remove, and Find in)1(O ,
constant, time complexity. There is no faster implementation.

1.1. Implementation Overview.

To insert, remove, and find information stored, we assume the existence of a key that uniquely
identifies information related to a particular key. Information is stored in records that are indexed
by a key. For the purpose of this discussion, let us assume that array I contains the information
we desire. Array I is indexed by key k . A record is found by coding the expression I[k].

1.2. Implementation Challenge.

The challenge is that key k may be a character string. A character string is not a suitable index
for an array. Arrays are usually indexed by an integer or, in some programming languages, a
restricted range of integers. The challenge is to map a string to an integer that can be used to
index array I. The technique used is to add successive characters of the key string k to an
unsigned integer, u, which is shifted left four bits in every iteration. The remainder, r, of the
unsigned integer u divided by an arbitrarily large prime number p is the index of array I. Array
has p elements. There are other methods for mapping a string to an integer value.

1.2.1. Example.

Suppose string keys ann, bianca, cosette, and denise map to integer keys 4, 8, 7, 1,
respectively. The diagram in Figure 1 illustrates how information for ann, bianca, cosette,
and denise is stored and retrieved.

0

1

2

3

4

5

6

7

8

9

10

11

12

ann

bianca

cosette

denise

Figure 1. Hashing

Data Structures Lecture 18
CS 3613 Hash ing

 2

1.3. Collisions.

It is possible for two keys, 1k and 2k , both strings, to map to the same integer key r. This event
is called a collision.

1.4. Resolving Collisions.

Two methods are used to resolve collisions called separate chaining and open addressing.

1.4.1. Separate Chaining

In separate chaining, all string keys that collide and map to the same integer index r are
inserted onto a list. The list is anchored to element r in array I. Elements of array I are
pointers to lists.

1.4.1.1. Example.

Suppose strings alice, bethany, clarisse, darla, and edith map to integer keys 3, 7, 1, 3,
and 5 respectively. The diagram in Figure 2 illustrates a separate chaining
implementation for this example.

0

1

2

3

4

5

6

7

8

9

10

11

12

alice

bethany

clarisse

darla

edith

Figure 2. Separate chaining

1.4.2. Open Addressing

In open addressing, all string keys that collide and map to the same integer index r are given
sequential entries, starting with element r. Suppose strings alice, bethany, and clarisse all
map to the integer index 5. If alice is entered first, then bethany, and, finally, clarisse, then
alice would be given element 5, bethany assigned to element 6, and clarrise would be put in
element 7. The algorithm used to resolve collisions is to find the first free element starting
with element 5. If element 5 is not available, the subsequent element, element 6, is tested
for availability. If the hash table is not full, an element will be found by successively
incrementing the index until an available element is found.

Data Structures Lecture 18
CS 3613 Hash ing

 3

1.4.2.1. Example.

Suppose strings alice, bethany, clarisse, darla, and edith map to integer keys 5, 5, 5, 3,
and 1 respectively. The diagram in Figure 3 illustrates an open addressing
implementation for this example.

0

1

2

3

4

5

6

7

8

9

10

11

12

occupied key

alice

bethany

clarisse

yes

yes

yes

darla

edithyes

yes

no

no

no

no

no

no

no

no

Figure 3. Open Addressing

