
Data Structures Lecture 14
CS 3613 B+-Tree Time Complexity

 1

Problem: Estimate the time complexity of
finding a key in a B+-Tree of order m. Recall
that interior nodes of a B+-Tree of order m have

from 





2
m

to m children.

Let us change variables.





=

2
m

d and md =2

Let us say that interior nodes a B+-Tree of order
d have from d to 2d children.

Let F(n) be the timing function for finding a key
in a B+-Tree of order d. Let n be the number of
unique keys in the B+-Tree.

The time required to find a key is the product of
the time required to search a node,)(dN ,
multiplied by the number of nodes in the path
from the root to a leaf)1(+h . The number of
nodes in the path from the root to a leaf is h+1
where h is the height of the B+-Tree.

))1)((()(+= hdNOnF

A binary search is used to search a particular
node. A node in a particular tree contains at
most 2d keys.

)1(log)2(log)(22 +== dOdOdN

Unique keys are contained the leaves of a B+-
Tree. Interior nodes of the B+-Tree having the
greatest height have d children and d keys in the

leaves. There are ld nodes at level l. Let n be
the number of unique keys in a B+-Tree of order
d and height h.

1+== hh dddn

nh dlog1 =+

Thus

))1(log(log)(2 += dnOnF d

() ())2log(log)(2 dnOnF d=

Problem: Estimate the time complexity of
inserting a key in a B+-tree of order d.

In the worst case, a key is inserted into every
node on the path to where the new key is
inserted. Inserting the new key causes a chain
reaction. Every node on the path to the new key
is split and a parent hoisted to the next higher
level. The length of the path from root to leaf is
h, the height of the tree. As a result of inserting
a new key, the height of the tree could be
increased by one. Let n be the number of unique
keys in the B+-tree after the new key is inserted.

The number of nodes for which a new key can be
inserted is one more than the height of the tree.

nh dlog1 =+

The time required to insert a node is)2(dO

)log2()(ndOnI d=

The time required to delete a node from a B+-tree
is the same as the time required to insert a node.

Data Structures Lecture 14
CS 3613 B+-Tree Time Complexity

 2

[1 ,2 ,3] [4, 5 ,6] [7, 8, 9] [10,11,12] [13,14,15] [16,17,18] [19,20,21] [22,23,24] [25,26,27]

(4 : 7) (13 : 16) (22 : 25)

(10 : 19)

Figure 1. B+Tree, order 3, completely filled

Data Structures Lecture 14
CS 3613 B+-Tree Time Complexity

 3

[1
, 2
, -]
 [3
, 4
, -]
 [5
, 6
, -]
 [7
, 8
, -]
 [9
,1
0
, -]
 [1
1
,1
2
, -]
 [1
3
,1
4
, -]
 [1
5
,1
6
, -]
 [1
7
,1
8
, -]
 [1
9
,2
0
, -]
 [2
1
,2
2
, -]
 [2
3
,2
4
, -]
 [2
5
,2
6
, -]
 [2
7
,2
8
, -]
 [2
9
,3
0
, -]
 [3
1
,3
2
, -]

(3
 : -
)

(7
 : -
)

(1
1
 : -)

(1
5
 : -)

(1
9
 : -)

(2
3
 : -
)

(2
7
 : -)

(3
1
 : -)

(5
 : -
)

(1
3
 : -)

(2
1
 : -)

(2
9
 : -)

(9
 : -)

(2
5
 : -)

(1
7
: -)

Figure 2. B+Tree, order 3, mimimally filled

