
Data Structures Lecture 13
CS 3613 B+-Tree Implementation

 1

Figure 1. class AbstractNode.

Figure 2. class Leaf.

#ifndef AbstractNode04_h
#define AbstractNode04_h 1
/#define ORDER 2
#define OVERFULLKEYS (2*ORDER+2)
#define FULLKEYS (2*ORDER+1)
#define OVERFULLPOINTERS (2*ORDER+3)
#define FULLPOINTERS (2*ORDER+2)
//--
//Class AbstractNode defines the virtual interface of a B+AbstractNode
//--
class AbstractNode {
public:

virtual void Print(ostream& o,int depth)=0;
 virtual AbstractNode* FindChild(int k)=0;
 virtual AbstractNode* Child(int k)=0;
 virtual void Insert(AbstractNode* K)=0;
 virtual bool IsOverFull(void)=0;
 virtual int FetchKey(int i)=0;
 virtual int FetchKeyCount(void)=0;
 virtual AbstractNode* SplitNHoist(void)=0;
 virtual bool IsHoisted(void)=0;
 virtual void ResetIsHoisted(void)=0;
};
#endif

#ifndef Leaf04_h
#define Leaf04_h 1
class Leaf: public AbstractNode {
protected:
 int keycount;
 int key[OVERFULLKEYS];
public:

Leaf();
 Leaf(int k);
 void Print(ostream& o,int depth);
 AbstractNode* FindChild(int k);
 AbstractNode* Child(int k);
 void Insert(AbstractNode* K);
 bool IsMember(int k);
 bool IsOverFull(void);
 int Index(int k);
 int FetchKey(int i);
 int FetchKeyCount(void);
 AbstractNode* SplitNHoist(void);
 bool IsHoisted(void);
 void ResetIsHoisted(void);
};
#endif

Data Structures Lecture 13
CS 3613 B+-Tree Implementation

 2

Figure 3. class Node.

Figure 4. class Tree.

#ifndef Node04_h
#define Node04_h 1
#include "Leaf04.h"
class Node : public Leaf {
 AbstractNode* child[OVERFULLPOINTERS];
 bool ishoisted;
public:
 Node();
 Node(AbstractNode* p1,int k1,AbstractNode* p2);
 AbstractNode* FindChild(int k);
 AbstractNode* Child(int k);
 void Print(ostream& o,int depth);
 void Insert(AbstractNode* K);
 bool IsOverFull(void);
 AbstractNode* SplitNHoist(void);
 bool IsHoisted(void);
 void ResetIsHoisted(void);
};
#endif

#ifndef Tree04_h
#define Tree04_h 1
#include "Node04.h"
class Tree {
 AbstractNode* root;
 AbstractNode* Insert(AbstractNode* N,int k);
 void Print(ostream& o,AbstractNode* N,int depth);
public:
 Tree();
 ~Tree();
 void Insert(int k);
 void Print(ostream& o);
};
#endif

Data Structures Lecture 13
CS 3613 B+-Tree Implementation

 3

Figure 5. Function Insert.

AbstractNode* Node::Insert(AbstractNode* n,int k)
1. if (!n) return new Leaf(k);
2. if (k ∈ n) return n;
3. return Merge(Insert(n->FindChild(k),k);

