Data Structures Lecturel3
CS3613 B*-Tree Implementation

#ifndef AbstractNodeO4 h

#define AbstractNode0O4_h 1

/#define ORDER 2

#define OVERFULLKEYS (2* ORDER+2)
#define FULLKEYS (2*ORDER+1)

#define OVERFULLPOINTERS (2* ORDER+3)
#define FULLPOINTERS (2* ORDER+2)

1l

/IClass AbstractNode defines the virtual interface of a B+AbstractNode

1l

class AbstractNode {

public:
virtual void Print(ostream& o,int depth)=0;
virtual AbstractNode* FindChild(int k)=0;
virtual AbstractNode* Child(int k)=0;
virtual void Insert(AbstractNode* K)=0;
virtual bool 1sOverFull(void)=0;
virtual int FetchKey(int i)=0;
virtual int FetchKeyCount(void)=0;
virtual AbstractNode* SplitNHoist(void)=0;
virtual bool IsHoisted(void)=0;
virtual void ResetlsHoisted(void)=0;

|3

#endif

Figure 1. class AbstractNode.

#ifndef Leaf04_h
#defineLeaf04_h1
class Leaf: public AbstractNode {
protected:
int keycount;
int key[OVERFULLKEYS];
public:
Leaf();
Leaf(int k);
void Print(ostream& o,int depth);
AbstractNode* FindChild(int k);
AbstractNode* Child(int k);
void Insert(AbstractNode* K);
bool IsMember (int k);
bool IsOverFull(void);
int Index(int k);
int FetchKey(int i);
int FetchKeyCount(void);
AbstractNode* SplitNHoist(void);
bool IsHoisted(void);
void ResetlsHoisted(void);
|3
#endif

Figure 2. classLeaf.



Data Structures
CS 3613

Lecturel3
B*-Tree Implementation

#ifndef Node04_h
#defineNode04_h 1
#include" Leaf04.h"
class Node : public Leaf {
AbstractNode* child{lOVERFULLPOINTERS];
booal ishoisted;
public:
Node();
Node(AbstractNode* pl,int k1,AbstractNode* p2);
AbstractNode* FindChild(int k);
AbstractNode* Child(int k);
void Print(ostream& o,int depth);
void Insert(AbstractNode* K);
boal 1sOverFull(void);
AbstractNode* SplitNHoist(void);
bool IsHoisted(void);
void ResetlsHoisted(void);
|8
#endif

Figure 3. classNode.

#ifndef Tree04_h
#define Tree04_h 1
#include" Node04.h"
class Tree{
AbstractNode* root;
AbstractNode* Insert(AbstractNode* N,int k);
void Print(ostream& o,AbstractNode* N,int depth);
public:
Tree();
~Tree();
void Insert(int k);
void Print(ostream& o);
|3
#endif

Figure 4. classTree.



Data Structures Lecturel3
CS3613 B*-Tree Implementation

AbstractNode* Node::Insert(AbstractNode* n,int k)
1. if (!n) return new Leaf(k);
2. if(kl n)returnn;
3. return Merge(Insert(n->FindChild(k),k);

Figure5. Function Insert.



