
Data Structures  Lecture 15 
CS 3613  B+-Trees 

 1 

B-Trees 
A B-tree of order d is a tree with the following structural properties: 
1. The root either is a leaf or has between 2 and 12 +d children. 
2. All nodes that are not leaves, except the root, have between d and 12 +d children. 
3. All leaves are at the same depth 
4. All leaves have between d and 2d keys. 
5. All data are stored in leaves. 
6. Interior nodes contain 2d keys and 2d+1 pointer. 

6.1. Pointers are denoted p1, p2, …, p2d+1. 
6.2. Keys are denoted, k1, k2, k2d. 

7. Pointers reference the children of interior nodes. 
8. Keys are in ascending order with dkkk 221 <<< L . 

9. The value of key ki is equal to the smallest key in the subordinate tree referenced by pointer pi+1.  For 
example, the value of k1 is equal to the smallest key in the subordinate tree referenced by pointer p2.  In 
a similar way, the values of keys k2, k3, …, k2d, are equal to the smallest keys in subordinate trees 
referenced by pointers p3, p4, …, p2d+1, respectively. 
 

1. A B-tree of order one is shown in Figure 1. 
2. Interior nodes are represented by rounded-boxes containing both pointers and keys in Figure 1. 
3. Leaves are shown as square-cornered-boxes having only keys in Figure 1. 
4. Since d=1, each interior node can have at most three ( 31)1(2 =+ ) children and leaves have at most 

two keys.  
5. The root (18:-:-) has two children.  The root is not a leaf. 
6. Interior nodes are those nodes having keys (6:12) and (24:30).  The first, (6:12) has three children and 

the second, (24:30), has three children.   
7. Leaves are those nodes having keys [0,3], [6,9], [12,15], [18,21], [24,27], and [30,33]. 
8. The root, when it is not a leaf, and interior nodes are denoted (k1,k2,…,k2d) with dashes (-) in place of 

actual keys when the key does not exist. 
9. Leaves are denoted [k1,k2,…,k2d] with dashes (-) in place of actual keys when the key does not exist. 
 

k 1 k 2 k 1 k 2k 1 k 2 k 1 k 2k 1 k 2 k 1 k 2

k 1 k 2p pp1 2 3

k 1 k 2p pp1 2 3

k 1 k 2p pp1 2 3

3 60 9 12 15 18 21 24 27 30 33

6 12 24 30

18

 
Figure 1. B+-Tree of order 1. 



Data Structures  Lecture 15 
CS 3613  B+-Trees 

 2 

 
 

A B-tree can be represented by listing the nodes using a preorder traversal and indenting them according to 
their depth.  For example, the B-tree in Figure 1 can be represented 
(18,-) 

(6,12) 
[0,3] 
[6,9] 
[12,15] 

(24,30) 
[18,21] 
[24,27] 
[30,33] 

10. B-trees can also be represented graphically as illustrated in Figure 2.  The root, when it is not a leaf, 
and interior nodes are designated using a box with round corners.  Leaves are shown in boxes with 
square corners.  The B-tree in Figure 1 is also shown in Figure 2. 

 
 

0,3 6,9 12,15 18,21 24,27 30,33

6:12 24:30

18:-

 
Figure 2. B+-tree of order 1 



Data Structures  Lecture 15 
CS 3613  B+-Trees 

 3 

Insertion 
 
1. Start with an empty B-tree of order 1.  Insert key 51.  The resulting tree contains a single leaf. 
 

[51,-] 
 
2. Insert key 29.  Key 51 is shifted one position to the right preserving the property that keys are always 

in ascending order. 
 

[29,51] 
 
3. Insert key 73.  Key 73 is appended to the list of keys in the node.  The leaf is now overfull. 
 

[29,51,73] 
 

3.1. Split the leaf. 
[29,-] 
[51,73] 

 
3.2. Create an empty interior node that will be the parent of the two leaves. 

(-:-) 
[29,-] 
[51,73] 

 
3.3. Copy the smallest key in the node having the larger keys into the newly created interior node. 

(51:-) 
[29,-] 
[51,73] 

 
3.4. Assign a pointer to the first leaf [29,-] to 1p  and a pointer to the second leaf, [51,73] to 2p . 
 
 

4. Insert key 105.   
(51:-) 

[29,-] 
[51,73,105] 

 
4.1. The leaf, [51,73,105], is overfull. 
4.2. Split the leaf 

(51:-) 
[29,-] 
[51, -] 
[73,105] 

 
4.3. Create an empty interior node that will be the parent of the two leaves. 

(51:-) 
[29,-] 

 (-,-) 
[51, -] 
[73,105] 

 



Data Structures  Lecture 15 
CS 3613  B+-Trees 

 4 

4.4. Copy the smallest key in the node having the larger keys into the newly created interior node. 
(51:-) 

[29,-] 
 (73,-) 

[51, -] 
[73,105] 

 
4.5. Merge the newly created interior node with the existing interior node. 

(51:73) 
[29,-] 
[51, -] 
[73,105] 
 

5. Insert key 15.   
(51:73) 

[15,29] 
[51, -] 
[73,105] 

 
 

 
6. Insert key 31. 

(51:73) 
[15,29,31] 
[51, -] 
[73,105] 

 
6.1. The leaf [15,29,31], is overfull. Split the leaf into [15,-] and [29,31].  Hoist the middle key into a 

new interior node (29:-) having pointers to the two leaves [15,-] and [29,31]. 
(51:73) 

(29:-) 
[15,-] 
[29,31] 
 [51, -] 
[73,105] 

 
6.2. The new interior node must be merged with the existing interior node. 

(51:73) ?   (29:-) 
[15,-] 
[29,31] 
 [51, -] 
[73,105] 

 
(29:51:73)  

[15,-] 
[29,31] 
 [51, -] 
[73,105] 

 
6.3. The interior node, (29:51:73) is overfull and must be split. 

(29:51:73) 
[15,-] 
[29,31] 
 [51, -] 
[73,105] 



Data Structures  Lecture 15 
CS 3613  B+-Trees 

 5 

 
6.4. Splitting an interior node is different than splitting a leaf.  The middle key is removed rather than 

copied.  Pointers to the subordinate interior nodes are assigned to pointers, 1p and 2p on either 
side of key 51 in the new root (51:-). 

(51:-) 
(29:-) 
(73:-) 

 
6.5. Subordinate leaves remain attached to their respective interior nodes.  

(51:-) 
(29:-) 

[15,-] 
[29,31] 

 (73:-) 
[51, -] 
[73,105] 

 


