Data Structures Lecturel15

CS 3613 B*-Trees

B-Trees

A B-tree of order d is atree with the following structural properties:

1. Theroot either isaleaf or has between 2 and 2d + 1children.

2. All nodes that are not leaves, except the root, have between d and 2d + 1children.

3. All leaves are at the same depth

4. All leaves have betweend and 2d keys.

5. All dataarestoredinleaves.

6. Interior nodes contain 2d keys and 2d+ 1 pointer.
6.1. Pointers are denoted py, p2, ..., P2d+-
6.2. Keysare denoted, k1, k, kog.

7. Pointers reference the children of interior nodes.

8. Keysareinascending order with K; <k, <--- <k, .

9. Thevalue of key k; is equal to the smallest key in the subordinate tree referenced by pointer p.;. For
example, the value of k; isequal to the smallest key in the subordinate tree referenced by pointer p,. In
a similar way, the values of keys ky, k3, ..., Koq, are equal to the smallest keys in subordinate trees
referenced by pointersps, py, ..., P2g+1, respectively.

1. A B-tree of order oneisshownin Figure 1.

2. Interior nodes are represented by rounded-boxes containing both pointers and keysin Figure 1.

3. Leavesare shown as square-cornered-boxes having only keysin Figure 1.

4. Since d=1, each interior node can have at most three (2(1) +1 = 3) children and leaves have at most
two keys.

5. Theroot (18:-:-) hastwo children. Theroot isnot aleaf.

6. Interior nodes are those nodes having keys (6:12) and (24:30). The first, (6:12) has three children and
the second, (24:30), hasthree children.

7. Leavesarethose nodes having keys[0,3], [6,9], [12,15], [18,2]], [24,27], and [30,33].

8. Theroot, when it is not aleaf, and interior nodes are denoted (ki K»,...,Kaq) with dashes (-) in place of
actual keyswhen the key does not exist.

9. Leavesaredenoted [kyKa,...,koq] with dashes (-) in place of actual keyswhen the key does not exist.

(pl ki|P, [k, p3']

18| ~ J

(pl Ky P |k, pa (pl Ki| Py | ks pﬂ
ARDNEN [24] [30] \)

Kilk, kilk, kKilk, kilks kilk, k

=
=~
N

013 619 12|15 18|21 24\ 27 0|33
Figurel. B+-Tree of order 1.

Data Structures Lecturel15
CS 3613 B*-Trees

A B-tree can be represented by listing the nodes using a preorder traversal and indenting them according to
their depth. For example, the B-tree in Figure 1 can be represented
(18,)
(6,12)
[0,3]
[6,9]
[12,15]
(24,30)
[18,21]
[24,27]
[30,33]
10. B-trees can also be represented graphically as illustrated in Figure 2. The root, when it is not a leaf,
and interior nodes are designated using a box with round corners. Leaves are shown in boxes with
square corners. The B-treein Figure 1 is also shown in Figure 2.

Figure 2. B+tree of order 1

Data Structures Lecturel15

CS 3613
Insertion

1. Start with an empty B-tree of order 1. Insert key 51. Theresulting tree contains asingle leaf.

[51,]

B*-Trees

2. Insert key 29. Key 51 is shifted one position to the right preserving the property that keys are always

in ascending order.
[29,51]
3. Insert key 73. Key 73 isappended to the list of keysin the node. The leaf is now overfull.
[29,51,73]
3.1 Splittheleaf.
[29/]
[51,73]

3.2. Create an empty interior node that will be the parent of the two leaves.

3.3. Copy the smallest key in the node having the larger keysinto the newly created interior node.

(51:-)
[291']
[51,73]

3.4. Assign apointer to thefirst leaf [29,-] to |3, and apointer to the second leaf, [51,73] to

4. Insert key 105.
(51:-)
[29!']
[51,73,105]

4.1. Theleaf,[51,73,105], isoverfull.
4.2. Split the leaf
(51:-)
[29,]
[511 _]
[73,105]

4.3. Create an empty interior node that will be the parent of the two leaves.
(51:-)
[29!']
('!')
[511 ']
[73,105]

P,

Data Structures Lecturel15
CS 3613 B*-Trees

4.4. Copy the smallest key in the node having the larger keysinto the newly created interior node.
(51:-)
[291_]
(731_)
(51, -]
[73,105]

45. Mergethe newly created interior node with the existing interior node.
(51:73)
[29!']
[511 ']
[73,105]

5. Insert key 15.
(51:73)
[15,29]
[51, -]
[73,105]

6. Insert key 31.
(51:73)
[15,29,31]
[511 ']
[73,105]

6.1. Theleaf [15,29,31], is overfull. Split the leaf into [15,-] and [29,31]. Hoist the middle key into a
new interior node (29:-) having pointers to the two leaves[15,-] and [29,31].
(51:73)

(29:-)

[15"]

[29,31]

[51, ']

[73,105]

6.2. The new interior node must be merged with the existing interior node.
(51:73) ? (29:)
[151']
[29,31]
(51, -]
[73,105]

(29:51:73)
[15"]
[29,31]
[51! ']
[73,105]

6.3. Theinterior node, (29:51:73) isoverfull and must be split.
(29:51:73)
[151']
[29,31]
(51, -]
[73,105]

Data Structures Lecturel15
CS 3613 B*-Trees

6.4. Splitting an interior node is different than splitting a leaf. The middle key is removed rather than
copied. Pointers to the subordinate interior nodes are assigned to pointers, [3,and |, on either

side of key 51 in the new root (51:-).
(51:-)
(29:-)
(73:-)

6.5. Subordinate |eaves remain attached to their respectiveinterior nodes.
(51:-)

(29:-)
[15!']
[29,31]

(73:-)
[511 ']
[73,105]

