

The worst-case performance of AVL-Tree operations depends primarily on the most adversely structured AVL tree rather than on the operations themselves. Figures 1, 2, and 3 show adversely structured AVL trees of height 2, 3, and 4.

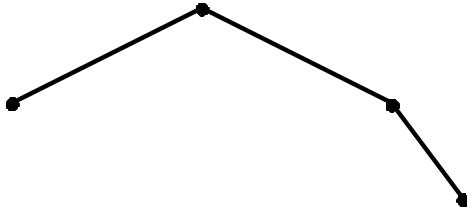


Figure 1. Adversely structured AVL tree of height 2.

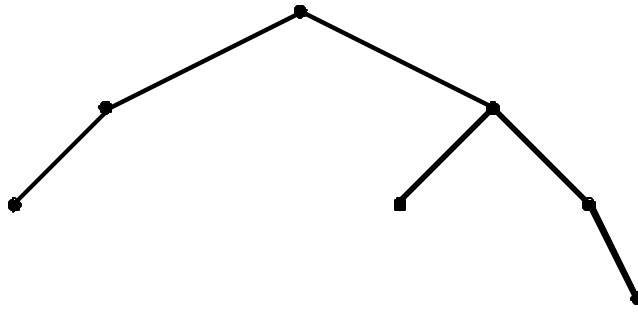


Figure 2. Adversely structured AVL tree of height 3.

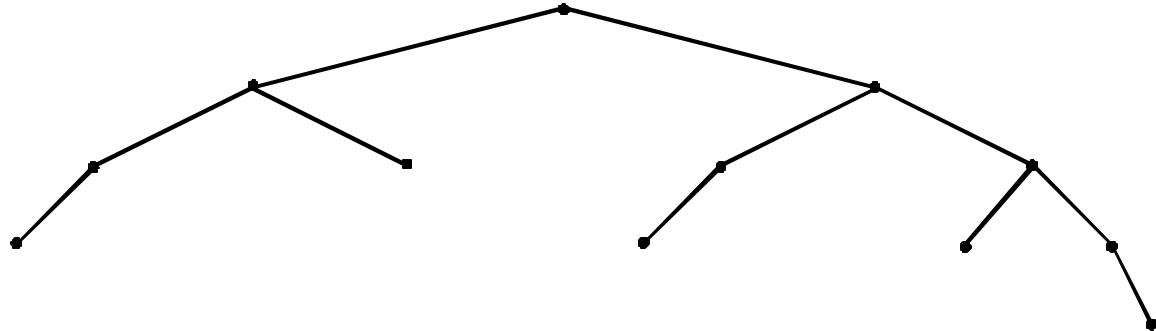


Figure 3. Adversely structured AVL tree of height 4.

An adversely structured AVL tree is a tree of height h with the minimum number of nodes. Let $S(h)$ be the function that defines the minimum number of nodes in an AVL tree of height h .
 $S(h) = S(h-1) + S(h-2) + 1, S(0) = 1, S(1) = 2.$

The height of an AVL tree is at most roughly $1.44\log_2(N+2) - 0.328$. However, the height of most AVL trees is only slightly more than $\log_2 N$.

The time complexity of insertion, removal, and search is equal to the height, h , of the AVL tree.