
Data Structures Lecture 13
CS 3613 AVL Tree Implementation

 1

Figure 1. class AVL definition.

class AVL {
 //---
 //Type Node defines a Node for an AVL tree
 //---
 struct Node {
 Node* LNode; //Left subtree
 char* key; //key
 Node* RNode; //Right subtree
 int height; //Height of the Node
 Node(char* key); //Construct the Node
 ~Node(); //Reclaim storage for the Node
 void Print //Print the node

(ostream& o
,int depth
);

};
 Node* root; //Root of the AVL tree
 void Kill(Node* n); //Remove all Nodes in the tree
 Node* Insert //Insert a unique key in the tree

(Node* n
,char* key
);

 Node* Remove //Remove a unique key from the tree
(Node* n
,char* key
);

 Node* SRR(Node* n); //Single right rotation
 Node* SLR(Node* n); //Single left rotation
 Node* RLR(Node* n); //Right left rotation
 Node* LRR(Node* n); //Left right rotation
 int Height(Node* n); //Height of Node n
 Node* LBalance(Node* n); //Balance on the left
 Node* RBalance(Node* n); //Balance on the right
 Node* FindMin(Node* n); //Find the Node having the smallest key
 int Max(int a, int b); //Find the maximum of two integers
 void Graph //InOrder traversal
 (Node* n
 ,int depth
 ,ostream& o
);
public:
 AVL(); //Construct an empty AVL tree
 ~AVL(); //Reclaim storage used by Nodes
 void Insert(char* key); //Insert a key
 void Graph(ostream& o); //Print an "ersatz" graph of the tree
 void Remove(char* key); //Remove a key
};

Data Structures Lecture 13
CS 3613 AVL Tree Implementation

 2

Figure 2. Member function Insert implementation

Figure 3. Member function SRR implementation

Figure 4. Member function LRR implementation

//---
//Function Insert Inserts keys into this AVL tree.
//---
AVL::Node* AVL::Insert(Node* n,char* key)
{ if (!n) return new Node(key);
 if (strcmp(key,n->key)==0) return n;
 if (strcmp(key,n->key)<0) {
 n->LNode=Insert(n ->LNode,key);
 if (Height(n->LNode)-Height(n->RNode)==2) {
 if (strcmp(key,n->LNode->key)<0) n=SRR(n); else n=LRR(n);
 }
 } else {
 n->RNode=Insert(n->RNode,key);
 if (Height(n->RNode)-Height(n->LNode)==2) {
 if (strcmp(key,n->RNode->key)>0) n=SLR(n); else n=RLR(n);
 }
 }
 n->height=Max(Height(n->LNode),Height(n->RNode))+1;
 return n;
}

//---
//Function SRR performs a single right rotation on Node k2
//---
AVL::Node* AVL::SRR(Node* k2)
{ Node* k1=k2->LNode;
 k2->LNode=k1->RNode;
 k1->RNode=k2;
 k2->height=Max(Height(k2->LNode),Height(k2->RNode))+1;
 k1->height=Max(Height(k1->LNode),k2->height)+1;
 return k1;
}

//---
//Function LRR performs a left-right rotation on Node k3
//---
AVL::Node* AVL::LRR(Node* k3)
{ k3->LNode=SLR(k3->LNode);
 return SRR(k3);
}

