Data Structures
CS 3613

Lecturel3

AVL Tree Implementation

class AVL {

1

/IType Node defines a Node for an AVL tree

1

struct Node {
Node* LNode;
char* key;
Node* RNode;
int height;
Node(char* key);
~Node();
void Print
(ostream& o
,int depth
);
|3
Node* root;
void Kill(Node* n);
Node* Insert
(Node* n
,char* key
)i
Node* Remove
(Node* n
,char* key
);
Node* SRR(Node* n);
Node* SLR(Node* n);
Node* RLR(Node* n);
Node* LRR(Node* n);
int Height(Node* n);
Node* LBalance(Node* n);
Node* RBalance(Node* n);
Node* FindMin(Node* n);
int Max(int a, int b);
void Graph
(Node* n
,int depth
,0stream& o
);

public:

AVL();

~AVL();

void Insert(char* key);
void Graph(ostream& 0);
void Remove(char* key);

/L eft subtree

Ilkey

/IRight subtree

/[Height of the Node
/IConstruct the Node
/IReclaim storage for the Node
/IPrint thenode

//IRoot of the AVL tree
//IRemove all Nodesin thetree
/lInsert auniquekey in thetree

/IRemove a unique key from the tree

/ISingleright rotation

/ISingleleft rotation

/IRight Ieft rotation

/IL eft right rotation

//Height of Node n

//Balance on the |eft

/IBalance on the right

/IFind the Node having the smallest key
/IFind the maximum of two integers
/INOrder traversal

/[Construct an empty AVL tree
//IReclaim storage used by Nodes
/linsert a key

/[Print an " ersatz" graph of thetree
//IRemove a key

Figure 1. classAVL definition.



Data Structures Lecturel3
CS3613 AVL Tree Implementation

I
/[Function Insert InsertskeysintothisAVL tree.
Il
AVL::Node* AVL::Insert(Node* n,char* key)
{ if('n) return new Node(key);
if (strcmp(key,n->key)==0) returnn;
if (strcmp(key,n->key)<0) {
n->LNode=Insert(n->LNode key);
if (Height(n->LNode)-Height(n->RNode)==2) {
if (strcmp(key,n->LNode->key)<0) n=SRR(n); else n=LRR(n);

} else{
n->RNode=Insert(n->RNode key);
if (Height(n->RNode)-Height(n->LNode)==2) {
if (strcmp(key,n->RNode->key)>0) n=SLR(n); else n=RLR(n);
}

}
n->hei ght=Max(Height(n->LNode),Height(n->RNode))+1;
returnn;

Figure 2. Member function Insert implementation

I
/[Function SRR performsasingleright rotation on Node k2
Il
AVL::Node* AVL::SRR(Node* k2)
{ Node* k1=2->LNode;
k2->LNode=k1->RNode;
k1->RNode=k2;
k2->height=Max(Height(k2->LNode),Height(k2->RNode))+1;
k 1->height=Max(Height(k 1->LNode) ,k2->height)+1,

return ki,
}
Figure 3. Member function SRR implementation
Il
/IFunction LRR performs a left-right rotation on Node k3
Il

AVL::Node* AVL::LRR(Node* k3)
{ k3->LNode=SLR(k3->LNode);
return SRR(k3);

}

Figure 4. Member function LRR implementation



