
Data Structures Lecture 11
CS 3613 Binary Tree Node Removal

 1

Depending on the kind of node to be deleted a
node can be removed in one of three ways.
Remember, we wish to preserve the order
property enforced on binary trees. The order
property is the left child is less than the parent
and the right child is greater than or equal to the
parent.
1. The node is a leaf. Delete the node

immediately.

Figure 1. Before deleting a leaf (grace)

Figure 2. After deleting a leaf (grace)
2. The node has one child. Replace the node

with its child.

Figure 3. Before deleting a node with one child
(laura)

Figure 3. After deleting a node with one child
(laura)

3. The node has two children. Recursively
replace the node with the node having the
smallest key in the right sub tree.

Since every key in the right sub tree is
greater than or (possibly) equal to the key in
the parent node, the smallest key in the right
sub tree will be less than or (possibly) equal
to any key in the new right sub tree. Since
any key in the right sub tree is greater than
any key in the left sub tree, the smallest key
in the right sub tree is the obvious candidate
to replace the parent.

Figure 5. Before deleting a node with two
children (felicia)

Figure 6. Identification of the smallest key in
the right sub tree (kay)

melissa

fantine theresa

cosette ilse

grace

wendy

melissa

fantine theresa

cosette ilse wendy

nell

qianjulia

ellen laura

karen

nell

qian

ellen

julia

karen

alice

zoe

nadine

felicia

penelope

opheliakay

maria

alice

zoe

nadine

felicia

penelope

opheliakay

maria

smallest
key

Data Structures Lecture 11
CS 3613 Binary Tree Node Removal

 2

Figure 7. Replace key felicia with a key kay

Figure 8. Delete the node whose former key
was kay

alice

zoe

nadine

kay

penelope

ophelia

maria

alice

zoe

nadine

kay

penelope

opheliamaria

Data Structures Lecture 11
CS 3613 Binary Tree Node Removal

 3

class Tree {
 struct Node {
 Node* LNode;
 int key
 Node* RNode;
 . . .
 };
 . . .
public:
 . . .
 Node* Remove(Node* n, int key);
 . . .
};

Tree::Node* Tree::Remove(Node* n, int key)
{ if (!n) return n;
 if (key==n->key) {
 if (n->LNode && n->RNode) { //two children
 n->key=FindMin(n->RNode)->key;
 n->RNode=Remove(n->RNode,n->key);
 return n;
 }
 if (n->LNode) { //one child on the left
 Node* d=n;
 n=n->LNode;
 delete d;
 return n;
 }
 if (n->RNode) { //one child on the right
 Node* d=n;
 n=n->RNode;
 delete d;
 return n;
 }
 if (n->LNode==0 && n->RNode==0) { //no children, a leaf
 delete n;
 return 0;
 }
}

