Data Structures
CS 3613

Depending on the kind of node to be deleted a
node can be removed in one of three ways.
Remember, we wish to preserve the order
property enforced on binary trees. The order
property is the left child is less than the parent
and the right child is greater than or equal to the
parent.

1. The node is a leaf. Delete the node

immediately.

melissa

e TN
A NS
/

grace

Figure 1. Before deleting aleaf (grace)

melissa

T

fantine theresa

cosette ilse Xydy

Figure 2. After deleting aleaf (grace)
2. The node has one child. Replace the node
with its child.

/ ) \

julia gian

i e
/

karen
Figure 3. Before deleting a node with one child
(laura)
/ ndl \
julia gian
ellen karen

Figure 3. After deleting a node with one child
(laura)

Lecturell
Binary Tree Node Removal

3. The node has two children. Recursively

replace the node with the node having the
smallest key in theright sub tree.

Since every key in the right sub tree is
greater than or (possibly) equal to the key in
the parent node, the smallest key in the right
sub tree will be less than or (possibly) equal
to any key in the new right sub tree. Since
any key in the right sub tree is greater than
any key in the left sub tree, the smallest key
in the right sub tree is the obvious candidate
to replace the parent.

/Ioen e'°°€\

felicia zoe
dice nadine
kay ophelia

maria
Figure5. Before deleting a node with two
children (felicia)

/IOen dow\

felicia zoe

dice nadine

smallest
key — > kay ophelia

maria

Figure6. Identification of the smallest key in
theright sub tree (kay)



Data Structures
CS 3613

/ \

dice nadine
ophelia

maria

Figure7. Replace key felicia with akey kay

/ \

dice nadlne

marla ophelia

Figure 8. Delete the node whose former key
was kay

Lecturell
Binary Tree Node Removal



Data Structures
CS 3613

class Tree{
struct Node {
Node* LNode;
int key
Node* RNode;

h

public:

Node* Remove(Node* n, int key);

Tree::Node* Tree::Remove(Node* n, int key)

{ if('n)returnn;
if (key==n->key) {

if (n->LNode & & n->RNode) {
n->key=FindMin(n->RNode)->key;
n->RNode=Remove(n->RNode,n->key);

return n;
}
if (n->LNode) {
Node* d=n;
n=n->LNode;
deleted;
returnn;
}
if (n->RNode) {
Node* d=n;
n=n->RNode;
deleted;
return n;

}

if (n->LNode==0 & & n->RNode==0) {

deleten;
return0;

/ltwo children

/lone child on the left

/lone child on theright

/Ino children, aleaf

Lecturell
Binary Tree Node Removal



