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Figure 1.  Generic tree 

 
1. Tree.  A tree is a collection of nodes.  

i. The collection can be empty.   
ii. A tree consists of a distinguished node r, called the root, and zero or more nonempty subordinate 

trees T1, T2, …, Tk,.  Each subordinate tree is connected by a directed edge from r to the root of the 
subordinate tree. 

2. Child.  The root of each subordinate tree, Ti, is a child of r. 
3. Parent.  The root, r, is the parent of each subordinate tree, Ti. 
4. Path.  A path from node n1 to nk is defined as a sequence of nodes n1, n2, …, nk such that ni is the 

parent of ni+1 for ki ≤≤1 . 
5. Length.  The length of a path is the number of edges on the path.  The length of the path is one less 

than the number of nodes on the path, namely 1−k . 
6. Depth.  The depth  of a node ni is the length of the unique path from the root to ni.  The root is at depth 

zero (0). 
7. Height.  The height of a node ni is the length of the longest path from ni to a leaf.  All leaves are at 

height zero (0).  The height of a tree is equal to the height of the root. 
 
Examples from Figure 2. 
1. deanne is a child of alice.   ilse is a child of edith.  ilse is the grandchild  of alice.   
2. edith is the parent of julia.    edith is the grandparent  of paula.   
3. The path from alice to qian is alice, edith, julia, qian. 
4. The length of the path from alice to qian is three (3). 
5. julia is a depth two (2) because there are two edges on the path from alice, the root, to julia. 
6. julia is at height one (1) because the longest path to leaf is the path to paula.  the path to paula has one 

edge.  The height of the tree in Figure 2 is the height of alice.  The height of the tree is three because 
the longest path from alice to a leaf contains three edges. 
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Figure 2. A tree
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A binary tree is a tree in which no node can have more than two children. 
 
Algorithms that operate on a binary tree are most efficient when the binary tree is completely filled with the 
possible exception of the bottom level.  
 
Let N be the number of the nodes in a completely fi lled binary tree.  Let h be the height of the tree. 
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For any tree that is entirely filled having the bottom level filled as well, 

 ∑
=

+ −==
h

i

hiN
0

1 122  

The height of the tree  Nh 2log= . 

The number of comparisons to find a particular key is h+1, or   1log 2 +N  
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Figure 3.  Counting the nodes in a binary tree 

Binary search trees have an order property.  Values stored in nodes to the left of node ni are less than the 
value in ni and values stored in nodes to the right of ni are greater than the value in ni. 
 
 

marie

stellagrace

denise laura

ilse

nadine

 
Figure 4.  Binary tree of identifiers 

 
Every identifier to the left of marie is lexicographically  less than marie and every identifier to the right of 
marie is lexicographically greater than marie.  "Lexicographically" can be translated to "alphabetically."    
 
Duplicates are prohibited.   Every identifier in the binary tree is unique.   
 
Node values are refereed to as keys.  Keys may have any type than can be compared using the comparison 
operators <, =, and >. 
 
Binary trees are implemented using structures for nodes and separately allocated storage for identifiers as 
shown in Figure 5. 
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Figure 5.  Anatomy of a binary tree. 
 

Figure 6.  Binary tree class definition. 
 
Tree traversals include preorder, inorder, and postorder. 
 

class Tree { 
 struct Node { 
  Node* LNode; 
  char* key; 
  Node* RNode; 
  … 
 }; 
 Node* T; 
 … 
}; 
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A preorder traversal of an expression tree is used to emit an expression in prefix form. 
Example: consider the expression in Figure 6 and the corresponding expression tree in Figure 7.  Prefix 
notation for the expression is shown in Figure 8. 

(2 + 8) / 4 * (7 - 3) 
Figure 6.  Expression 

 
Figure 7.  Expression tree for (2+8)/4*(7-3) 

 
* / + 2 8 4 - 7 3 

Figure 8.  Prefix notation for (2+8)/4*(7-3) 
 

 
void Tree::PreOrder(Tree* T,ostream& o) 
1. Return if the value of parameter T is NULL. 
2. Print the identifier referenced from this node. 
3. Visit the subordinate tree on the left. 
4. Visit the subordinate tree on the right. 
 
An InOrder traversal prints the values of nodes in ascending order.  An InOrder traversal of the binary tree 
in Figure 4 produces the following list. 
 
desire 
grace 
ilse 
laura 
marie 
nadine 
stella 
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void Tree::InOrder(Tree* T,ostream& o) 
1. Return if the value of parameter T is NULL. 
2. Visit the subordinate tree on the left. 
3. Print the identifier referenced from this node. 
4. Visit the subordinate tree on the right. 
 
A PostOrder traversal of an expression tree is used to emit an expression in suffix notation. 
 
A PostOrder traversal of the expression tree in Figure 7 produces the suffix form shown in Figure 9. 
 

2 8 + 4 / 7 3 - * 
Figure 9.  Suffix form of  (2+8)/4*(7-3) 

 
void Tree::PostOrder(Tree* T,ostream& o) 
1. Return if the value of parameter t is NULL. 
2. Visit the subordinate tree on the left. 
3. Visit the subordinate tree on the right. 
4. Print the identifier referenced from this node. 
 
Identifiers may be inserted into a binary tree using the following code. 
 
#include <string> 
#include <iostream> 
using namespace std; 
class Tree { 
 struct Node { 
  Node* LNode; 
  char* key; 
  Node* RNode; 
  Node(char* k); 
  ~Node(); 
 }; 
 Node* T; 
 void Kill(Node* N); 
 Node* Insert(Node* N,char* key); 
public: 
 Tree(); 
 ~Tree(); 
 void Insert(char* key); 
}; 
 
Tree::Node::Node(char* k):LNode(0),RNode(0) 
{ key:=new char[strlen(k)+1]; 
 strcpy(key,k); 
} 
Tree::Node::~Node() { if (key) delete[] key; } 
 
void Tree::Kill(Node* N) 
{ if  (n) { 
  Kill(N->LNode); 
  Kill(N->RNode); 
  delete N; 
 } 
} 
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Tree::Tree():T(0) {} 
 
Tree::~Tree() { Kill(T); } 
 
Tree::Node* Tree::Insert(Node* N,char* key) 
{ if (!N ) return new Node(key); 
 if (strcmp(key,N->key)==0) return N; 
 if (strcmp(key,N->key)<0) 
  N->LNode=Insert(N->LNode,key); 
 else 
  N->RNode=Insert(N ->RNode,key); 
 return N ; 
} 
 
void Tree::Insert(char* key) {T=Insert(T,key); } 
 
int main() 
{ Tree T; 
 T.Insert("marie"); 
 T.Insert("grace"); 
 T.Insert("stella"); 
 T.Insert("denise"); 
 T.Insert("laura"); 
 T.Insert("ilse"); 
 return 0; 
} 
 
 
 


