
Data Structures Lecture 10
CS 3613 Trees

 1

T
1

T
2

T
k

r

Figure 1. Generic tree

1. Tree. A tree is a collection of nodes.

i. The collection can be empty.
ii. A tree consists of a distinguished node r, called the root, and zero or more nonempty subordinate

trees T1, T2, …, Tk,. Each subordinate tree is connected by a directed edge from r to the root of the
subordinate tree.

2. Child. The root of each subordinate tree, Ti, is a child of r.
3. Parent. The root, r, is the parent of each subordinate tree, Ti.
4. Path. A path from node n1 to nk is defined as a sequence of nodes n1, n2, …, nk such that ni is the

parent of ni+1 for ki ≤≤1 .
5. Length. The length of a path is the number of edges on the path. The length of the path is one less

than the number of nodes on the path, namely 1−k .
6. Depth. The depth of a node ni is the length of the unique path from the root to ni. The root is at depth

zero (0).
7. Height. The height of a node ni is the length of the longest path from ni to a leaf. All leaves are at

height zero (0). The height of a tree is equal to the height of the root.

Examples from Figure 2.
1. deanne is a child of alice. ilse is a child of edith. ilse is the grandchild of alice.
2. edith is the parent of julia. edith is the grandparent of paula.
3. The path from alice to qian is alice, edith, julia, qian.
4. The length of the path from alice to qian is three (3).
5. julia is a depth two (2) because there are two edges on the path from alice, the root, to julia.
6. julia is at height one (1) because the longest path to leaf is the path to paula. the path to paula has one

edge. The height of the tree in Figure 2 is the height of alice. The height of the tree is three because
the longest path from alice to a leaf contains three edges.

juliailseheidi karen laura melissa

paula qian

edithdeanne fantine

nadine

gracecosettebridget

alice

Figure 2. A tree

Data Structures Lecture 10
CS 3613 Trees

 2

A binary tree is a tree in which no node can have more than two children.

Algorithms that operate on a binary tree are most efficient when the binary tree is completely filled with the
possible exception of the bottom level.

Let N be the number of the nodes in a completely fi lled binary tree. Let h be the height of the tree.

122 1 −≤≤ +hh N

For any tree that is entirely filled having the bottom level filled as well,

 ∑
=

+ −==
h

i

hiN
0

1 122

The height of the tree  Nh 2log= .

The number of comparisons to find a particular key is h+1, or   1log 2 +N

0

1

2

3

4

5

1

2

4

8

16

32
Figure 3. Counting the nodes in a binary tree

Binary search trees have an order property. Values stored in nodes to the left of node ni are less than the
value in ni and values stored in nodes to the right of ni are greater than the value in ni.

marie

stellagrace

denise laura

ilse

nadine

Figure 4. Binary tree of identifiers

Every identifier to the left of marie is lexicographically less than marie and every identifier to the right of
marie is lexicographically greater than marie. "Lexicographically" can be translated to "alphabetically."

Duplicates are prohibited. Every identifier in the binary tree is unique.

Node values are refereed to as keys. Keys may have any type than can be compared using the comparison
operators <, =, and >.

Binary trees are implemented using structures for nodes and separately allocated storage for identifiers as
shown in Figure 5.

Data Structures Lecture 10
CS 3613 Trees

 3

m

a

r

i

e

g

r

a

c

e

s

t

e

l

l

a

T

Node*

Node

key

char*

LNode

Node*

RNode

Node*

Node

key

char*

LNode

Node*

RNode

Node*

Node

key

char*

LNode

Node*

RNode

Node*

Node

key

char*

Lnode

Node*

Rnode

Node*

Node

key

char*

Lnode

Node*

Rnode

Node*

Figure 5. Anatomy of a binary tree.

Figure 6. Binary tree class definition.

Tree traversals include preorder, inorder, and postorder.

class Tree {
 struct Node {
 Node* LNode;
 char* key;
 Node* RNode;
 …
 };
 Node* T;
 …
};

Data Structures Lecture 10
CS 3613 Trees

 4

A preorder traversal of an expression tree is used to emit an expression in prefix form.
Example: consider the expression in Figure 6 and the corresponding expression tree in Figure 7. Prefix
notation for the expression is shown in Figure 8.

(2 + 8) / 4 * (7 - 3)
Figure 6. Expression

Figure 7. Expression tree for (2+8)/4*(7-3)

* / + 2 8 4 - 7 3

Figure 8. Prefix notation for (2+8)/4*(7-3)

void Tree::PreOrder(Tree* T,ostream& o)
1. Return if the value of parameter T is NULL.
2. Print the identifier referenced from this node.
3. Visit the subordinate tree on the left.
4. Visit the subordinate tree on the right.

An InOrder traversal prints the values of nodes in ascending order. An InOrder traversal of the binary tree
in Figure 4 produces the following list.

desire
grace
ilse
laura
marie
nadine
stella

*

/

+

2 8

4 7 3

-

Data Structures Lecture 10
CS 3613 Trees

 5

void Tree::InOrder(Tree* T,ostream& o)
1. Return if the value of parameter T is NULL.
2. Visit the subordinate tree on the left.
3. Print the identifier referenced from this node.
4. Visit the subordinate tree on the right.

A PostOrder traversal of an expression tree is used to emit an expression in suffix notation.

A PostOrder traversal of the expression tree in Figure 7 produces the suffix form shown in Figure 9.

2 8 + 4 / 7 3 - *
Figure 9. Suffix form of (2+8)/4*(7-3)

void Tree::PostOrder(Tree* T,ostream& o)
1. Return if the value of parameter t is NULL.
2. Visit the subordinate tree on the left.
3. Visit the subordinate tree on the right.
4. Print the identifier referenced from this node.

Identifiers may be inserted into a binary tree using the following code.

#include <string>
#include <iostream>
using namespace std;
class Tree {
 struct Node {
 Node* LNode;
 char* key;
 Node* RNode;
 Node(char* k);
 ~Node();
 };
 Node* T;
 void Kill(Node* N);
 Node* Insert(Node* N,char* key);
public:
 Tree();
 ~Tree();
 void Insert(char* key);
};

Tree::Node::Node(char* k):LNode(0),RNode(0)
{ key:=new char[strlen(k)+1];
 strcpy(key,k);
}
Tree::Node::~Node() { if (key) delete[] key; }

void Tree::Kill(Node* N)
{ if (n) {
 Kill(N->LNode);
 Kill(N->RNode);
 delete N;
 }
}

Data Structures Lecture 10
CS 3613 Trees

 6

Tree::Tree():T(0) {}

Tree::~Tree() { Kill(T); }

Tree::Node* Tree::Insert(Node* N,char* key)
{ if (!N) return new Node(key);
 if (strcmp(key,N->key)==0) return N;
 if (strcmp(key,N->key)<0)
 N->LNode=Insert(N->LNode,key);
 else
 N->RNode=Insert(N ->RNode,key);
 return N ;
}

void Tree::Insert(char* key) {T=Insert(T,key); }

int main()
{ Tree T;
 T.Insert("marie");
 T.Insert("grace");
 T.Insert("stella");
 T.Insert("denise");
 T.Insert("laura");
 T.Insert("ilse");
 return 0;
}

