Data Structures Lecturel0
CS 3613 Trees

Figurel. Generic tree

Tree. Atreeisacollection of nodes.

i. Thecollection can be empty.

ii. A tree consists of adistinguished node r, called the root, and zero or more nonempty subordinate
trees Ty, Ty, ..., Tx,. Each subordinate treeis connected by a directed edge from r to the root of the
subordinate tree.

Child Theroot of each subordinatetree, T;, isachild of r.

Parent. Theroot, r, isthe parent of each subordinatetree, T;.

Path. A path from node n; to ny is defined as a sequence of nodes ny, ny, ..., rg such that n; isthe

parent of ni,1for 1E1 £ K.

Length. The length of a path is the number of edges on the path. The length of the path is one less

than the number of nodes on the path, namely k - 1.

Depth. The depth of a node n; is the length of the unique path from the root to n. Theroot is at depth

zero (0).

Height. The height of a node n; is the length of the longest path from n; to a leaf. All leaves are at

height zero (0). The height of atreeisegual to the height of the root.

Examples from Figure 2.

SarwWN PR

deanneisachild of alice. ilseisachild of edith. ilseisthe grandchild of alice.

edithisthe parent of julia. edith isthe grandparent of paula.

The path from alice to gianis alice, edith, julia, gian.

The length of the path from alice to gian isthree (3).

juliais adepth two (2) because there are two edges on the path from alice, theroot, to julia

juliais at height one (1) because the longest path to leaf is the path to paula. the path to paula has one
edge. The height of the tree in Figure 2 is the height of alice. The height of the tree is three because
the longest path from alice to aleaf contains three edges.

T

bridget cosette deanne /edlt& /ti ne grace
heidi ilse jlii karen laura melissa nadine
paula gian

Figure2. A tree

Data Structures Lecturel0
CS 3613 Trees

A binary treeis atreein which no node can have more than two children.

Algorithms that operate on a binary tree are most efficient when the binary tree iscompletely filled with the
possible exception of the bottom level.

Let N be the number of the nodesin acompletely filled binary tree. Let h bethe height of the tree.
2"ENE2™ -1

For any tree that is entirely filled having the bottom level filled aswell,

h .
N:é 2| :2h+1_1
i=0
The height of thetree h = dog, N (.

The number of comparisonsto find a particular key ish+1, or dog, N{(j+1

a b W N P O

Figure 3. Counting the nodesin abinary tree
Binary search trees have an order property. Values stored in nodes to the left of node n; are less than the
valuein n; and values stored in nodes to the right of n; are greater than the value inn;.

marie\
/gr ace\ /S]t B
denise laura nadine

ilse
Figure4. Binary tree of identifiers

Every identifier to the left of marie is lexicographically less than marie and every identifier to the right of
marie islexicographically greater than marie. "Lexicographically" can be translated to "alphabetically."

Duplicates are prohibited. Every identifier in the binary treeis unique.

Node values are refereed to askeys. Keys may have any type than can be compared using the comparison
operators<, =, and >.

Binary trees are implemented using structures for nodes and separately allocated storage for identifiers as
shown in Figure 5.

Data Structures Lecturel0

CS3613 Trees
T
Node*
\
Node
LNode key RNode
Node* char* Node*
y \ \
Node m Node
L Node key Rhode a LNode key Rhode
Node* char* Node* r Node* char* Node*

| i |
l e _i_

g s
] [t
2| € |
< |||

e il
N :

Figure 5. Anatomy of abinary tree.
class Tree{

struct Node {
Node* LNode;
char* key;
Node* RNode;

3
Node* T;

Figure 6. Binary tree class definition.

Treetraversalsinclude preorder, inorder, and postorder.

Data Structures Lecturel0
CS 3613 Trees

A preorder traversal of an expression treeis used to emit an expression in prefix form.
Example: consider the expression in Figure 6 and the corresponding expression tree in Figure 7. Prefix
notation for the expression is shown in Figure 8.
(2 +8) /1 4* (7 - 3)
Figure 6. Expression

/*_
\4 7/ N

3

/

2

//
\
8

Figure7. Expression treefor (2+8)/4*(7-3)

*/ +284- 73
Figure 8. Prefix notation for (2+8)/4* (7-3)

void Tree::PreOrder(Tree* T,ostream& o)

1. Returnif thevalue of parameter T isNULL.
2. Print theidentifier referenced from this node.
3. Visit the subordinate tree on the | eft.

4. Visit the subordinate tree on the right.

An InOrder traversal prints the values of nodes in ascending order. An InOrder traversal of the binary tree
in Figure 4 produces the following list.

desire
grace
ilse
laura
marie
nadine
stella

Data Structures Lecturel0
CS 3613 Trees

void Tree:: InOrder(Tree* T,ostream& 0)

1. Returnif the value of parameter T isNULL.
2. Visit the subordinate tree on the | eft.

3. Print theidentifier referenced from this node.
4. Visit the subordinate tree on the right.

A PostOrder traversal of an expression treeis used to emit an expression in suffix notation.
A PostOrder traversal of the expression treein Figure 7 produces the suffix form shown in Figure 9.

28+4/] 73-*
Figure9. Suffix form of (2+8)/4*(7-3)

void Tree::PostOrder(Tree* T,ostream& 0)

1. Returnif thevalue of parametert isNULL.
2. Visit the subordinate tree on the | eft.

3. Visit the subordinate tree on theright.

4. Print theidentifier referenced from this node.

Identifiers may be inserted into a binary tree using the following code.

#include <string>
#include <iostream>
using namespace std;
class Tree{
struct Node {
Node* LNode;
char* key;
Node* RNode;
Node(char* k);
~Node();
|3
Node* T,
void Kill(Node* N);
Node* Insert(Node* N,char* key);
public:
Tree();
~Tree();
void Insert(char* key);

|

Tree::Node::Node(char* k):LNode(0),RNode(0)
{ key:=new char[strlen(k)+1];
strepy(key K);

}
Tree::Node::~Node() { if (key) delete]] key; }

void Tree::Kill(Node* N)

{ it (n{
Kill(N->LNode);
Kill(N->RNode);
deleteN;

Data Structures Lecturel0
CS 3613 Trees

Tree:: Tree(): T(0) {}
Tree::~Tree() { Kill(T); }

Tree::Node* Tree::Insert(Node* N,char* key)
{ if (IN) return new Node(key);
if (strcmp(key,N->key)==0) return N;
if (strcmp(key,N->key)<0)
N->LNode=Insert(N->LNode key);
else
N->RNode=Insert(N->RNode key);
return N;
}

void Tree::Insert(char* key) {T=Insert(T key); }

int main()

{ TreeT,;
T.Insert(" marie");
T.Insert(" grace");
T.Insert(" stella");
T.Insert(" denise");
T.Insert(" laura");
T.Insert("ilse");
return 0;

