Data Structures Lecture9
CS 3613 Recursion, Recurrence Relations, and I nduction

Recursion
1. Recursion refersto afunction that callsitself. For example, consider functionfactorial.

Line Code

1 unsigned int factorial (unsigned int n)
2 { if(n<)
3 return 1,
4 else

5 return n*factorial (n-1);
6

}

Function factorial cdls itself on line5.

2. Recursion isimplemented using a stack. Recall that the last element put on a stack is the first element
retrieved from the stack. A function returns to its caller. Activation records or frames, are pushed on
and popped off a stack as functions are called and return. An activation record is put on the call-stack
when afunction is called and removed when the function returns.

Parameters, local variables, and the return address are put on the call-stack.
Consider the following exanple.

ine Code
#include <iostream>
using namespace std;
unsigned int factorial (unsigned int n)
{ if(n<])
return 1;

L

1

2

1

2

3

4 else
5 return n*factorial(n-1);

6 }

7 int main()

8 { cout << factorial(3) <<endl;
9 return 0,

10)

Function factorial is called once from function main and three times recursively as shown in Figure 1.
Note that parameter n is diminished in each successive call to function factorial. No more cals are
made to function factorial after the value of parameter n isreduced to zero.

Activation records are removed from the call stack in Figure 2. The return value computed in the
activation record on top of the call stack is transmitted to the calling function. Thus, n*factorial (n-1),
is computed for every value of n. Please note the return values as they are computed in successive
diagramsin Figure 2.

Data Structures Lecture9

CS3613 Recursion, Recurrence Relations, and I nduction
activation

record
n 0 ‘

ra 6 factorial
v y
Y

n 1 n 1

ra 6 ra 6 factoria
v v b
n n n 2 I

ra 6 ra 6 ra 6 factorial
v v v "
n 3 n 3 n 3 n 3 i

ra 9 ra 9 ra 9 ra 9 factoria
rv v v v ’
A

ra 0s ra 0s ra 0s ra 0s ra 0s main
rv rv v v v y

a b c d e
flow

Figure 1 (a) Activation record for main. (b) Activation record for main and the first call to function
factori al . (c) Activation record for main and two calls to function f act ori al . (d) Activation record
for main and three calls to function f act ori al . (€) Activation record for main and four calls to function
factorial .

activation
record
A
n 0
ra 6 factorial
v 1 v
n 1 n 1 4
ra 6 ra 6 factoria
rv 1 v v
n 2 n 2 n 2 4
ra 6 ra 6 ra 6 factoria
v 2 rv v v
n 3 n 3 n 3 n 3 4
ra 9 ra 9 ra 9 ra 9 factorial
2% 6 2% rv v v
A
ra os ra os ra 0s ra 0s ra 0s]
main
rv 0 v v rv v v
e d c b a
flow

Figure 2. (a) Function factorial returns O!. (b) Function factoria returns 1!. (c) Function factorial returns
2!, (d) Function factorial returns 3! (e) Function main returnsto the operating system

Data Structures Lecture9
CS 3613 Recursion, Recurrence Relations, and I nduction

3. Design recursive functions so they always terminate. Recursive functions that do not terminate, fail
for lack of memory. Consider function bad.

Line Code

1 int bad(unsigned int N)

2 { if (N==0)

3 return0;

4

5 return bad(N/3 +1)+N-1;

6 }

For N>0, function bad never calls itself having a value of zero for its argument. Thus, function bad

never terminates when the value of its parameter is greater than zero because function bad only
terminates when its argument is equal to zero.

Recurrence Relations

1. A recurrence relation relates the nth element of a sequence to its predecessors. Because recurrence
relations are closely related to recursive algorithms, recurrence relations arise naturally in the analysis
of recursive algorithms.

2. Consider the sequence

5,8, 11, 14, 17, ...

Write arecurrence relation and initial conditions that can be used to generate the sequence given
above.

2.1. Recurrencerelation: a, =a,_, +3
2.2. Initia conditions: &, =5

3. Writerecursive functionf that implements the recurrence relation described in section 2.
Line Code
1 struct ZeroException {
2 ZeroException() { }
3 ;
4 unsigned int f(unsigned int n)
5 { switch (n) {
6 case 0: throw Zer oException();
7 casel: return5;
8 default: returnf(n-1)+3;
9 }
10 }
4. Write arecurrence relation for a Fibonacci sequence. The current value is the sum of the two previous
values. Definethefirst two values of the sequence to be 0 and 1.
41. Recurrencerelation: a, =a, , +a, ,
4.2. Initial conditions: @, = 0,8, =1
5. Writerecursive function fib that implements the recurrence relations described in section 4.
Line Code
1 unsigned int fib(unsigned int n)
2 { switch (n) {
3 caseO: return O;
4 case l: return 1,
5 default: return fib(n-1)+ fib(n-2);
6 }
7 }

Data Structures Lecture9
CS 3613 Recursion, Recurrence Relations, and I nduction

Induction
1. Induction is often used to find an expression for a sequence. Recurrent relations produce many such
sequences. For example, consider the sum of the sequence of odd numbers,

1+345+---+(2n- 1) =n?

n
11 Hypothesis:é (2i-1)=n’
i=1

1.2. Basis Step. Prove the hypothesisfor n=1.

1

1.2.1. Left side of theequalityé 2-)=201-1n=1
i=1

1.2.2. Right side of the equality n =11% =1

1.2.3. Left and right side match, completing the proof of the basis step.

1.3. Induction Step. Assume the hypothesis is true for 1£ | £ K. Prove the hypothesis is true for
i =k+1.
lgl))
131 Proveg (2i- 1) =(k+1)

i=1

gl(Zi +1) = é (2 +1) +(2(k +1) - 1)

k

é (2i-1= k? by applying theinduction hypothesis
o

a (2i +1) =k* + (2(k +1) - 1) by substitution

i=1

lgl

a2+ =k*+2k+2-1=k*+2k+1=(k+1?

i=1

