
Data Structures Lecture 9
CS 3613 Recursion, Recurrence Relations, and Induction

 1

Recursion
1. Recursion refers to a function that calls itself. For example, consider function factorial.

Line Code
1 unsigned int factorial(unsigned int n)
2 { if (n<1)
3 return 1;
4 else
5 return n*factorial(n-1);
6 }

Function factorial calls itself on line 5.

2. Recursion is implemented using a stack. Recall that the last element put on a stack is the first element
retrieved from the stack. A function returns to its caller. Activation records, or frames, are pushed on
and popped off a stack as functions are called and return. An activation record is put on the call-stack
when a function is called and removed when the function returns.

Parameters, local variables, and the return address are put on the call-stack.

Consider the following example.

Line Code
1 #include <iostream>
2 using namespace std;
1 unsigned int factorial(unsigned int n)
2 { if (n<1)
3 return 1;
4 else
5 return n*factorial(n-1);
6 }
7 int main()
8 { cout << factorial(3) << endl;
9 return 0;
10 }

Function factorial is called once from function main and three times recursively as shown in Figure 1.
Note that parameter n is diminished in each successive call to function factorial. No more calls are
made to function factorial after the value of parameter n is reduced to zero.

Activation records are removed from the call stack in Figure 2. The return value computed in the
activation record on top of the call stack is transmitted to the calling function. Thus, n*factorial(n-1),
is computed for every value of n. Please note the return values as they are computed in successive
diagrams in Figure 2.

Data Structures Lecture 9
CS 3613 Recursion, Recurrence Relations, and Induction

 2

Figure 1. (a) Activation record for main. (b) Activation record for main and the first call to function
factorial. (c) Activation record for main and two calls to function factorial. (d) Activation record
for main and three calls to function factorial. (e) Activation record for main and four calls to function
factorial.

Figure 2. (a) Function factorial returns 0!. (b) Function factorial returns 1!. (c) Function factorial returns
2!, (d) Function factorial returns 3! (e) Function main returns to the operating system

a b c d e

ra

rv

ra

rv

n

ra

rv

n

ra

rv

ra

rv

n

ra

rv

n

ra

rv

n

ra

rv

ra

rv

n

ra

rv

n

ra

rv

n

ra

rv

n

ra

rv

ra

rv

n

ra

rv

0

1

2

3

os

9

6

6

6

3

9

3

9

3

9

2

1

6

6 6

2

os os osos

factorial

factorial

factorial

factorial

main

activation
record

flow

factorial

factorial

factorial

factorial

main

activation
record

ra

rv

ra

rv

n

ra

rv

n

ra

rv

ra

rv

n

ra

rv

n

ra

rv

n

ra

rv

ra

rv

n

ra

rv

n

ra

rv

n

ra

rv

n

ra

rv

ra

rv

n

ra

rv

0

1

2

3

os

9

6

6

6

3

9

3

9

3

9

2

1

6

6 6

2

os os osos

abcde

1

1

2

6

0

flow

Data Structures Lecture 9
CS 3613 Recursion, Recurrence Relations, and Induction

 3

3. Design recursive functions so they always terminate. Recursive functions that do not terminate, fail
for lack of memory. Consider function bad.

Line Code
1 int bad(unsigned int N)
2 { if (N==0)
3 return 0;
4 else
5 return bad(N/3 +1)+N -1;
6 }

For N>0, function bad never calls itself having a value of zero for its argument. Thus, function bad
never terminates when the value of its parameter is greater than zero because function bad only
terminates when its argument is equal to zero.

Recurrence Relations
1. A recurrence relation relates the nth element of a sequence to its predecessors. Because recurrence

relations are closely related to recursive algorithms, recurrence relations arise naturally in the analysis
of recursive algorithms.

2. Consider the sequence
5, 8, 11, 14, 17, …

Write a recurrence relation and initial conditions that can be used to generate the sequence given
above.
2.1. Recurrence relation: 31 += −nn aa

2.2. Initial conditions: 51 =a

3. Write recursive function f that implements the recurrence relation described in section 2.
Line Code
1 struct ZeroException {
2 ZeroException() { }
3 };
4 unsigned int f(unsigned int n)
5 { switch (n) {
6 case 0: throw ZeroException();
7 case 1: return 5;
8 default: return f(n-1)+3;
9 }
10 }

4. Write a recurrence relation for a Fibonacci sequence. The current value is the sum of the two previous

values. Define the first two values of the sequence to be 0 and 1.
4.1. Recurrence relation: 21 −− += nnn aaa

4.2. Initial conditions: 1,0 10 == aa

5. Write recursive function fib that implements the recurrence relations described in section 4.
Line Code
1 unsigned int fib(unsigned int n)
2 { switch (n) {
3 case 0: return 0;
4 case 1: return 1;
5 default: return fib(n-1)+ fib(n-2);
6 }
7 }

Data Structures Lecture 9
CS 3613 Recursion, Recurrence Relations, and Induction

 4

Induction
1. Induction is often used to find an expression for a sequence. Recurrent relations produce many such

sequences. For example, consider the sum of the sequence of odd numbers,

2)12(531 nn =−++++ L

1.1. Hypothesis:∑
=

=−
n

i

ni
1

2)12(

1.2. Basis Step. Prove the hypothesis for n=1.

1.2.1. Left side of the equality∑
=

=−=−
1

1

1)1)1(2()12(
i

i

1.2.2. Right side of the equality 11,1 2 ==n
1.2.3. Left and right side match, completing the proof of the basis step.

1.3. Induction Step. Assume the hypothesis is true for ki ≤≤1 . Prove the hypothesis is true for
1+= ki .

1.3.1. Prove∑
+

=

+=−
1

1

2)1()12(
k

i

ki

∑ ∑
+

= =

−+++=+
1

1 1

)1)1(2()12()12(
k

i

k

i

kii

∑
=

=−
k

i

ki
1

2)12(by applying the induction hypothesis

∑
+

=

−++=+
1

1

2)1)1(2()12(
k

i

kki by substitution

∑
+

=

+=++=−++=+
1

1

222)1(12122)12(
k

i

kkkkki

