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Recursion 
1. Recursion refers to a function that calls itself.  For example, consider function factorial. 
 
Line Code 
1 unsigned int factorial(unsigned int n) 
2 { if (n<1)  
3 return 1;  
4 else  
5 return n*factorial(n-1);  
6 } 
   

Function factorial calls  itself on line 5. 
 

2. Recursion is implemented using a stack.  Recall that the last element put on a stack is the first element 
retrieved from the stack.  A function returns to its caller.  Activation records, or frames, are pushed on 
and popped off a stack as functions are called and return.  An activation record is put on the call-stack 
when a function is called and removed when the function returns. 

 
Parameters, local variables, and the return address are put on the call-stack. 
 
Consider the following example. 

 
Line Code 
1 #include <iostream> 
2 using namespace std; 
1 unsigned int factorial(unsigned int n) 
2 { if (n<1)  
3 return 1;  
4 else  
5 return n*factorial(n-1);  
6 } 
7 int main() 
8 { cout << factorial(3) << endl; 
9  return 0; 
10 } 
 

Function factorial is called once from function main and three times recursively as shown in Figure 1.  
Note that parameter n is diminished in each successive call to function factorial.  No more calls are 
made to function factorial after the value of parameter n  is reduced to zero. 
 
Activation records are removed from the call stack in Figure 2.  The return value computed in the 
activation record on top of the call stack is transmitted to the calling function.  Thus, n*factorial(n-1), 
is computed for every value of n.  Please note the return values as they are computed in successive 
diagrams in Figure 2. 
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Figure 1. (a) Activation record for main. (b) Activation record for main and the first call to function 
factorial. (c) Activation record for main and two calls to function factorial. (d) Activation record 
for main and three calls to function factorial.  (e) Activation record for main and four calls to function 
factorial.  

 
Figure 2. (a) Function factorial returns 0!.  (b) Function factorial returns 1!.  (c) Function factorial returns 
2!, (d) Function factorial returns 3! (e) Function main returns to the operating system 
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3. Design recursive functions so they always terminate.  Recursive functions that do not terminate, fail 
for lack of memory.  Consider function bad. 

Line Code 
1 int bad(unsigned int N) 
2 {  if (N==0)  
3   return 0; 
4    else 
5   return bad(N/3 +1)+N -1; 
6 } 

For N>0, function bad never calls itself having a value of zero for its argument.  Thus, function bad 
never terminates when the value of its  parameter is greater than zero because function bad only 
terminates when its argument is equal to zero. 

 
Recurrence Relations 
1. A recurrence relation relates the nth element of a sequence to its predecessors.  Because recurrence 

relations are closely related to recursive algorithms, recurrence relations arise naturally in the analysis 
of recursive algorithms. 

2. Consider the sequence 
5, 8, 11, 14, 17, … 

Write a recurrence relation and initial conditions that can be used to generate the sequence given 
above. 
2.1. Recurrence relation: 31 += −nn aa  

2.2. Initial conditions: 51 =a  
 
3. Write recursive function f that implements the recurrence relation described in section 2. 
Line Code 
1 struct ZeroException { 
2   ZeroException() { } 
3 }; 
4 unsigned int f(unsigned int n) 
5 {  switch (n) { 
6   case 0: throw ZeroException(); 
7          case 1: return 5; 
8  default: return f(n-1)+3; 
9    } 
10 } 
 
4. Write a recurrence relation for a Fibonacci sequence.   The current value is the sum of the two previous 

values.  Define the first two values of the sequence to be 0 and 1. 
4.1. Recurrence relation: 21 −− += nnn aaa  

4.2. Initial conditions: 1,0 10 == aa  

 
5. Write recursive function fib that implements the recurrence relations described in section 4. 
Line Code 
1 unsigned int fib(unsigned int n) 
2 {  switch (n) { 
3   case 0: return 0; 
4           case 1: return 1; 
5   default: return fib(n-1)+ fib(n-2); 
6    } 
7 } 
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Induction 
1. Induction is often used to find an expression for a sequence.  Recurrent relations produce many such 

sequences.  For example, consider the sum of the sequence of odd numbers, 
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1.2. Basis Step. Prove the hypothesis for n=1. 
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1.2.2. Right side of the equality 11,1 2 ==n  
1.2.3. Left and right side match, completing the proof of the basis step. 
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