Data Structures Lecture8

CS3613 Radix Sort Time Complexity
Line | Code Cost

1 void Radix::SortMgr(istream& i,0ostream& o) 0

2 { ListL; 0

3 L.Scan(i); 0

4 L.Print(o," Unsorted List"); 0

5 int p=L.Longest()-1; 2

6 while (p>=0;){ p

7 BucketSort(L,p); p(13n+14b+2)
8 p--; p

9 } 1

10 L.Print(o,” Sorted List"); 0

11 } 0

T(n) = p(I3n+14b+2) +2p +3

Line | Code Cost
1 void Radix::BucketSort(List& L,int p) 0

2 { ListB[256]; 0

3 while (IL.IsEmpty()) { n

4 Element* e=L.HeadRemove(); 4n
5 if (e->Length()<p+1) { 2n
6 B[Q].Taillnsert(e); an
7 } else{ 0

8 char b=e->id[p]; 2n
9 B[b].Taillnsert(e); 4n
10 } 0

11 } 0

12 int a=0; 1

13 while (a<256) { b
14 L.Join(B[a]); 12b
14 at+; b
16 } 1

17 [} 0

T(n)=13n+14b+2




Data Structures Lecture8

CS3613 Radix Sort Time Complexity

Line | Code Cost

1 Element* List::HeadRemove(void) 0

2 { Element* e=head; 1

3 if (head==tail) { 1

4 head=tail =0; 2

5 } else{ 0

6 head=head->next; 2

7 } 0

8 return e; 0

9 } 0
T(n)=4

Line | Code Cost

1 void List:: Taillnsert(Element* €) 0

2 { if(head){ 0

3 tail->next=e; 2

4 } else{ 0

5 head=g; 1

6 } 0

7 tail=e; 1

8 e->next=0; 2

9 } 0
T(n)=4

Line | Code Cost

1 void List::Join(List& L)

2 { if (LIsEmpty() & & IsEmpty()) return; 2

3 if (L.IsEmpty() & & !IsEmpty()) return; 3

4 if (L.IsEmpty() & & IsEmpty()) { 3

5 head=L.head; tail=L tail; 2

6 cursor=L.cursor; longest=L.longest; 2

7 L.head=L .tail=L.cursor=0; 3

L.longest=0; 1

8 }

9 if (L.IsEmpty() & & 'IsEmpty()) { 4

10 tail->next=L.head; 3

11 tail=L.tail; 1

12 L.head=L.tail=L.cursor=0; 3

L.longest=0; 1

13 }

14 }
T(n) =12




