
Data Structures Lecture 8
CS 3613 Radix Sort Time Complexity

 1

Line Code Cost
1 void Radix::SortMgr(istream& i,ostream& o) 0
2 { List L; 0
3 L.Scan(i); 0
4 L.Print(o,"Unsorted List"); 0
5 int p=L.Longest()-1; 2
6 while (p>=0;){ p

7 BucketSort(L,p);)21413(++ bnp

8 p--; p

9 } 1
10 L.Print(o,"Sorted List"); 0
11 } 0
 32)21413()(++++= pbnpnT

Line Code Cost
1 void Radix::BucketSort(List& L,int p) 0
2 { List B[256]; 0
3 while (!L.IsEmpty()) { n
4 Element* e=L.HeadRemove(); n4
5 if (e->Length()<p+1) { n2
6 B[0].TailInsert(e); n4
7 } else { 0
8 char b=e->id[p]; n2
9 B[b].TailInsert(e); n4
10 } 0
11 } 0
12 int a=0; 1
13 while (a<256) { b
14 L.Join(B[a]); b12
14 a++; b
16 } 1
17 } 0
 21413)(++= bnnT

Data Structures Lecture 8
CS 3613 Radix Sort Time Complexity

 2

Line Code Cost
1 Element* List::HeadRemove(void) 0
2 { Element* e=head; 1
3 if (head==tail) { 1
4 head=tail=0; 2
5 } else { 0
6 head=head->next; 2
7 } 0
8 return e; 0
9 } 0
 4)(=nT

Line Code Cost
1 void List::TailInsert(Element* e) 0
2 { if (head) { 0
3 tail->next=e; 2
4 } else { 0
5 head=e; 1
6 } 0
7 tail=e; 1
8 e->next=0; 2
9 } 0
 4)(=nT

Line Code Cost
1 void List::Join(List& L)
2 { if (L.IsEmpty() && IsEmpty()) return; 2
3 if (L.IsEmpty() && !IsEmpty()) return; 3
4 if (!L.IsEmpty() && IsEmpty()) { 3
5 head=L.head; tail=L.tail; 2
6 cursor=L.cursor; longest=L.longest; 2
7 L.head=L.tail=L.cursor=0;

 L.longest=0;
3
1

8 }
9 if (!L.IsEmpty() && !IsEmpty()) { 4
10 tail->next=L.head; 3
11 tail=L.tail; 1
12 L.head=L.tail=L.cursor=0;

 L.longest=0;
3
1

13 }
14 }
 12)(=nT

