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1. O(f(n)): O( ) is pronounced "Oh of" and 
suggests "Order of."  The function f(n) 
characterizes the amount of time required to 
execute a particular algorithm. In particular, 
f(n) characterizes the rate of growth.  
Function f(n) is a measure of how much time 
is required to execute an algorithm. The 
argument, n, represents the number of input 
values processed by the algorithm. O(f(n)) is 
a way of characterizing the rate of growth 
for the time required to execute an 
algorithm. 

 
The function O(f(n)) is a ceiling on the rate 
of growth.  The function f(n) grows no faster 
than O(f(n)). 

 
1.1. The argument n, is the number of 

inputs accepted by an algorithm. 
1.2. Function f(n) characterizes the rate of 

growth required by an algorithm to 
process n inputs. 

1.3. The function O(f(n)) is a ceiling on the 
rate of growth. 

 
Definition: ))(()( nfOnT = if there are 

positive constants c and 0n such that 

)()( ncfnT ≤ when 0nn ≥ . 

2. Ω (g(n)): Ω( ) is pronounced "Omega of." 
Function Ω( ) is similar to O( ) but specifies 
a floor to the rate of growth for an 
algorithm. Ω( ) specifies the best 
performance that can be expected from an 
algorithm. An algorithm always runs slower 
that the expression given by Ω( ).  Function 
g(n) characterizes the rate of growth of the 
timing function for an algorithm.  Function 
g(n) has the same function as function f(n). 

 
Definition: ))(()( ngnT Ω= if there are 

positive constants c and 0n such that 

)()( ncfnT ≥ when 0nn ≥ . 

 
3. Θ(h(n)): Θ( ) is pronounced "theta of."  

Function Θ( ) describes the condition when 
the rate of growth for both the ceiling 
function O( ) and the floor function Ω( ) 
match. 

 

Definition: ))(()( nhnT Θ= if and only if 

))(()( nhOnT = and ))(()( nhNT Ω=  

when 0nn ≥ . 

Rules: 
1. If ))(()(1 nfOnT = and 

))(()(2 ngOnT = , then 

1.1. )))((),((max()()( 21 ngOnfOnTnT =+
 

1.2. ))()(()()( 21 ngnfOnTnT ∗=∗  

2. If )(nT is a polynomial of degree k , then 

)()( knnT Θ= . 
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Definition: ))(()( nfOnT = if there are 
positive constants c and n0 such that 

)()( ncfnT ≤  when 0nn ≥ . 

1. Find T(n). 
2. Select f(n) 
3. Find cmin and c 
4. Find n0 
 
1. Find T(n) 
Consider the code fragment 
sum=0; 
for (a=0;a<N;a++) sum++; 
Line Code Cost 
1 sum=0; 1 
2 a=0; 1 
3 while (a<N ) { 

∑
−

=

1

0

1
N

a

 

4   sum++; same as 3 
5   a++; same as 3 
6 } 1 
 

Open form: 313)(
1

0

+= ∑
−

=

N

a

nT  

Closed form: 33)( += nnT  

2. Select f(n) 
Let nnf =)(  

3. Find cmin and c 
 

)(
)(

limmin nf
nT

c
n ∞→

=  

3
33

limmin =
+

=
∞→ n

n
c

n
 

∂+= mincc  
c=3+1=4 
4. Find n0 
Solve )()( ncfnT =  
3n+3=4n 
n=3 

 
Function )(nf  Name 

c Constant 
nlog  Logarithmic 

n2log  Log-squared 

n Linear 
nn log   

n2 Quadratic 
n3 Cubic 
2n Exponential 
 

Table 1. Sample values for various f(n) 

n O(n) O(n log 
n) 

O(n**2) O(n**3) O(2**n) 

1 10 0 1 2 2 

2 20 2 4 12 4 

3 30 5 9 36 8 

4 40 8 16 80 16 

5 50 12 25 150 32 

6 60 16 36 252 64 

7 70 20 49 392 128 

8 80 24 64 576 256 

9 90 29 81 810 512 

10 100 33 100 1000 1024 

 

Figure 1.  Sample values for various f(n) 

0

200

400

600

800

1000

1200

1 3 5 7 9

N

f(
N

)

N

O(N)

O(N log N)
O(N**2)

O(N**3)

O(2**N)



Data Structures  Lectures 7 
CS 3613  Algorithm Analysis 

 3 

Goal:  We want to verify our analytical estimation of time complexity.  Our solution is to design two 
functions.  One function produces time complexity using our analytical model and the other function 
computes an empirical value. 
 
int analytical(int n) 
{ return 3*n+3; 
} 
 
int empirical(int N) 
{ int t=0; 
 int a,sum; 
 sum=0;    t++; 
 a=0;    t++; 
 while (a<n ) {  t++; 
  sum++;   t++; 
  a++;   t++; 
 }     t++; 
 return t ; 
} 
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Example 2:  Binary Search 
//---------------------------------------------------------------------------------------------------- 
//class List defines the attributes of a list of integers. 
//Integers are stored in ascending order.  Element L[0] is a sentinel.  The sentinel 
//is the smallest integer.  The sentinel is not in the list. 
//---------------------------------------------------------------------------------------------------- 
class List { 
 int size;  //Number of available elements  
 int N;  //Number of occupied elements  
 int* L;  //Points to storage for the list 
public: 
 List(int sz=100); 
 ~List() 
 class FullException { }; 
 class EmptyException  { }; 
 bool IsFull(void); 
 bool IsEmpty(void); 
 void Insert(int key); 
 void Remove(int key); 
 int Search(int key) 
}; 
 
Line Code  
1 int List::Search(int key)  
2 {  int lo=1, hi=N;  
3    while (lo<=hi) {  
4      int m=(lo+hi)/2;  
5      if (key==L[m]) return m;  
6      if (key<L[m])  
7         hi=m-1;  
8      else  
9         lo=m+1;  
10    }  
11    return 0;  
12 }  
 

L[0] L[1] L[2] L[3] L[4] L[5] L[6] L[7] L[8] 
 11 22 33 44 55 66 77 88 
 
lo, hi, lo<=hi, m key L[m] key==L[m] key<L[m] m-1 key>L[m] m+1 
 

lo hi lo<=hi m key L[m] key 
== 

L[m] 

key 
<  

L[m] 

m-1 key 
> 

L[m] 

m+1 

1 8 yes 4 33 44 no yes 3   
1 3 yes 2 33 22 no no  yes 3 
3 3 yes 3 33 33 yes     

 
lo hi lo<=hi m key L[m] key 

== 
L[m] 

key 
<  

L[m] 

m-1 key 
> 

L[m] 

m+1 

1 8 yes 4 34 44 no yes 3   
1 3 yes 2 34 22 no no  yes 3 
3 3 yes 3 34 33 no   yes 4 
4 3 no         
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Algorithm Analysis of Binary Search 
 
Line Code Cost 
1 int List::Search(int key) 0 
2 {  int lo=1, hi=N; 2 
3    while (lo<=hi) { k 
4      int m=(lo+hi)/2; 3k  
5      if (key==L[m]) return m; k  
6      if (key<L[m]) k  
7         hi=m-1; 2k  
8      else 0 
9         lo=m+1; 2k  
10    } 1 
11    return 0; 0 
12 } 0 
 Total 8k+3 
 
Let k  be the number of times the while-loop on lines 3 through 10 iterates. 
 
The number of elements that could match the key is halved every iteration.  Eventually a single element is 
selected.  If the last element does not match the key then the while-loop terminates.  Variable lo exceeds 
variable hi. 
 

1. Let n  be the number of elements in the list to search.  Let 0nn =  the number of elements to 

search initially. 

2. The number of elements to search after the first iteration is no more than 
2
0

1

n
n = . 

3. In a similar way the number of elements to search after the second iteration is no more than 

2
01

2 22
nn

n == . 

4. In general we define the recurrence relation nn
n

n i
i ==+ 01 ,

2
. 

5. The solution to the recurrence relation is 
ii

n
n

2
=  

6. We know that eventually the number of elements to search will be reduced to one on, say, the 
thk iteration, 1=kn . 

7. Further, 1
2

==
kk

n
n  

8. 
k

n
2

1 ≤  

 

9. nknk
2log2 ≤⇒≤  

 
The largest value of k  is n2log  
 
1. 3log8)( 2 += nnT  

2. nnf 2log)( =  
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3. 8
log

3log8
lim

)(
)(

lim
2

2
min =

+
==

∞→∞→ n
n

nf
nT

c
nn

, 9=c  

4. )()( 00 ncfnT ≤  

4.1. 0202 log93log8 nn ≤+  

4.2. 3log 02 ≥n  

4.3. 3
0 2≥n  


