
Data Structures Lectures 7
CS 3613 Algorithm Analysis

 1

1. O(f(n)): O() is pronounced "Oh of" and
suggests "Order of." The function f(n)
characterizes the amount of time required to
execute a particular algorithm. In particular,
f(n) characterizes the rate of growth.
Function f(n) is a measure of how much time
is required to execute an algorithm. The
argument, n, represents the number of input
values processed by the algorithm. O(f(n)) is
a way of characterizing the rate of growth
for the time required to execute an
algorithm.

The function O(f(n)) is a ceiling on the rate
of growth. The function f(n) grows no faster
than O(f(n)).

1.1. The argument n, is the number of

inputs accepted by an algorithm.
1.2. Function f(n) characterizes the rate of

growth required by an algorithm to
process n inputs.

1.3. The function O(f(n)) is a ceiling on the
rate of growth.

Definition:))(()(nfOnT = if there are

positive constants c and 0n such that

)()(ncfnT ≤ when 0nn ≥ .

2. Ω (g(n)): Ω() is pronounced "Omega of."
Function Ω() is similar to O() but specifies
a floor to the rate of growth for an
algorithm. Ω() specifies the best
performance that can be expected from an
algorithm. An algorithm always runs slower
that the expression given by Ω(). Function
g(n) characterizes the rate of growth of the
timing function for an algorithm. Function
g(n) has the same function as function f(n).

Definition:))(()(ngnT Ω= if there are

positive constants c and 0n such that

)()(ncfnT ≥ when 0nn ≥ .

3. Θ(h(n)): Θ() is pronounced "theta of."

Function Θ() describes the condition when
the rate of growth for both the ceiling
function O() and the floor function Ω()
match.

Definition:))(()(nhnT Θ= if and only if

))(()(nhOnT = and))(()(nhNT Ω=

when 0nn ≥ .

Rules:
1. If))(()(1 nfOnT = and

))(()(2 ngOnT = , then

1.1.)))((),((max()()(21 ngOnfOnTnT =+

1.2.))()(()()(21 ngnfOnTnT ∗=∗

2. If)(nT is a polynomial of degree k , then

)()(knnT Θ= .

Data Structures Lectures 7
CS 3613 Algorithm Analysis

 2

Definition:))(()(nfOnT = if there are
positive constants c and n0 such that

)()(ncfnT ≤ when 0nn ≥ .

1. Find T(n).
2. Select f(n)
3. Find cmin and c
4. Find n0

1. Find T(n)
Consider the code fragment
sum=0;
for (a=0;a<N;a++) sum++;
Line Code Cost
1 sum=0; 1
2 a=0; 1
3 while (a<N) {

∑
−

=

1

0

1
N

a

4 sum++; same as 3
5 a++; same as 3
6 } 1

Open form: 313)(
1

0

+= ∑
−

=

N

a

nT

Closed form: 33)(+= nnT

2. Select f(n)
Let nnf =)(

3. Find cmin and c

)(
)(

limmin nf
nT

c
n ∞→

=

3
33

limmin =
+

=
∞→ n

n
c

n

∂+= mincc
c=3+1=4
4. Find n0
Solve)()(ncfnT =
3n+3=4n
n=3

Function)(nf Name

c Constant
nlog Logarithmic

n2log Log-squared

n Linear
nn log

n2 Quadratic
n3 Cubic
2n Exponential

Table 1. Sample values for various f(n)

n O(n) O(n log
n)

O(n**2) O(n**3) O(2**n)

1 10 0 1 2 2

2 20 2 4 12 4

3 30 5 9 36 8

4 40 8 16 80 16

5 50 12 25 150 32

6 60 16 36 252 64

7 70 20 49 392 128

8 80 24 64 576 256

9 90 29 81 810 512

10 100 33 100 1000 1024

Figure 1. Sample values for various f(n)

0

200

400

600

800

1000

1200

1 3 5 7 9

N

f(
N

)

N

O(N)

O(N log N)
O(N**2)

O(N**3)

O(2**N)

Data Structures Lectures 7
CS 3613 Algorithm Analysis

 3

Goal: We want to verify our analytical estimation of time complexity. Our solution is to design two
functions. One function produces time complexity using our analytical model and the other function
computes an empirical value.

int analytical(int n)
{ return 3*n+3;
}

int empirical(int N)
{ int t=0;
 int a,sum;
 sum=0; t++;
 a=0; t++;
 while (a<n) { t++;
 sum++; t++;
 a++; t++;
 } t++;
 return t ;
}

Data Structures Lectures 7
CS 3613 Algorithm Analysis

 4

Example 2: Binary Search
//--
//class List defines the attributes of a list of integers.
//Integers are stored in ascending order. Element L[0] is a sentinel. The sentinel
//is the smallest integer. The sentinel is not in the list.
//--
class List {
 int size; //Number of available elements
 int N; //Number of occupied elements
 int* L; //Points to storage for the list
public:
 List(int sz=100);
 ~List()
 class FullException { };
 class EmptyException { };
 bool IsFull(void);
 bool IsEmpty(void);
 void Insert(int key);
 void Remove(int key);
 int Search(int key)
};

Line Code
1 int List::Search(int key)
2 { int lo=1, hi=N;
3 while (lo<=hi) {
4 int m=(lo+hi)/2;
5 if (key==L[m]) return m;
6 if (key<L[m])
7 hi=m-1;
8 else
9 lo=m+1;
10 }
11 return 0;
12 }

L[0] L[1] L[2] L[3] L[4] L[5] L[6] L[7] L[8]
 11 22 33 44 55 66 77 88

lo, hi, lo<=hi, m key L[m] key==L[m] key<L[m] m-1 key>L[m] m+1

lo hi lo<=hi m key L[m] key
==

L[m]

key
<

L[m]

m-1 key
>

L[m]

m+1

1 8 yes 4 33 44 no yes 3
1 3 yes 2 33 22 no no yes 3
3 3 yes 3 33 33 yes

lo hi lo<=hi m key L[m] key

==
L[m]

key
<

L[m]

m-1 key
>

L[m]

m+1

1 8 yes 4 34 44 no yes 3
1 3 yes 2 34 22 no no yes 3
3 3 yes 3 34 33 no yes 4
4 3 no

Data Structures Lectures 7
CS 3613 Algorithm Analysis

 5

Algorithm Analysis of Binary Search

Line Code Cost
1 int List::Search(int key) 0
2 { int lo=1, hi=N; 2
3 while (lo<=hi) { k
4 int m=(lo+hi)/2; 3k
5 if (key==L[m]) return m; k
6 if (key<L[m]) k
7 hi=m-1; 2k
8 else 0
9 lo=m+1; 2k
10 } 1
11 return 0; 0
12 } 0
 Total 8k+3

Let k be the number of times the while-loop on lines 3 through 10 iterates.

The number of elements that could match the key is halved every iteration. Eventually a single element is
selected. If the last element does not match the key then the while-loop terminates. Variable lo exceeds
variable hi.

1. Let n be the number of elements in the list to search. Let 0nn = the number of elements to

search initially.

2. The number of elements to search after the first iteration is no more than
2
0

1

n
n = .

3. In a similar way the number of elements to search after the second iteration is no more than

2
01

2 22
nn

n == .

4. In general we define the recurrence relation nn
n

n i
i ==+ 01 ,

2
.

5. The solution to the recurrence relation is
ii

n
n

2
=

6. We know that eventually the number of elements to search will be reduced to one on, say, the
thk iteration, 1=kn .

7. Further, 1
2

==
kk

n
n

8.
k

n
2

1 ≤

9. nknk
2log2 ≤⇒≤

The largest value of k is n2log

1. 3log8)(2 += nnT

2. nnf 2log)(=

Data Structures Lectures 7
CS 3613 Algorithm Analysis

 6

3. 8
log

3log8
lim

)(
)(

lim
2

2
min =

+
==

∞→∞→ n
n

nf
nT

c
nn

, 9=c

4.)()(00 ncfnT ≤

4.1. 0202 log93log8 nn ≤+

4.2. 3log 02 ≥n

4.3. 3
0 2≥n

