Data Structures Lectures7

CS 3613 Algorithm Analysis

1. O(f(n)): O() is pronounced "Oh of" and Definition: T(n) = Q(h(n)) if and only if
suggests "Order of." The function f(n) - -
characterizes the amount of time required to T(n) =0(h(m)and T(N) =Wh(n)
execute a particular algorithm. In particular, when n 3 n,.

f(n) characterizes the rate of growth. Rules:
Function f(n) is a measure of how much time ' _

is required to execute an algorithm. The Lon Tl(n) _O(f(n)) and

argument, n, represents the number of input T,(n) =0O(g(n)), then

values processed by the algorithm. O(f(n)) is _

a way of characterizing the rate of growth L1 Tl(n) +T2(n) = max(O(f (), 0(g(n)))
for the time required to execute an

algorithm. 12. T,(nN)* T,(n) =O(f(n)* g(n))

The function O(f(n)) is a ceiling on the rate 2 1t T(n)isa Eolynomlal of degree k, then
of growth. The function f(n) grows no faster T(n) =Q(n%).
than O(f(n)).

11. The argument n, is the number of
inputs accepted by an algorithm.

1.2. Function f(n) characterizes the rate of
growth required by an algorithm to
process n inputs.

1.3. The function O(f(n)) is a ceiling on the
rate of growth.

Definition: T(n) =O(f(N))if there are
positive constants ¢ and N,such that
T(n) £cf (N)when N3 n,.

2. W((n)): W() is pronounced "Omega of."
Function W() is similar to O() but specifies
a floor to the rate of growth for an
algorithm. W() specifies the best

performance that can be expected from an
algorithm. An algorithm always runs slower
that the expression given by W(). Function
g(n) characterizes the rate of growth of the
timing function for an algorithm. Function
g(n) hasthe same function as function f(n).

Definition: T(n) =W(g(n))if there are
positive constants ¢ and Ngsuch that
T(n) 3 cf(N)when n 3 nj.

3. Q(h(n)): Q() is pronounced “"theta of."
Function Q() describes the condition when
the rate of growth for both the ceiling
function O() and the floor function W()
match.

Data Structures Lectures7

CS3613 Algorithm Analysis
I . i N
Definition: T(n) =O(f(n))if there are Function f () ame
positive constants ¢ and ng such that CI (L:OﬂStirr:;w'
T(n) £cf (n) when N3 n,. ocn cganthmic
1. Find T(n). log? n Log-squared
2. Select f(n) n Linear
3. Findcpnandc n|0g n
4, Findng 7 ;
n Quadratic
3 "
1. Find T(n) n Cubic
Consider the code fragment Z Exponential
sun¥o0, i
for (a=0;a<N; a++) sum++: Tablel. Samplevaluesfor various f(n)
Line | Code Cost n o(n) O(n)log Oo(n**2) O(n**3) O(2**n)
. n
; Z‘i’g_:o' 1 T 10 0 1 2 2
— 2 20 2 4 12
3 while (a<N) { N-1
a 1 3 30 5 36
a=0 4 40 8 16 80 16
4 Sum++; sameas 3 5 50 12 25 150 32
5 a++; same as 3 6 60 16 36 252 64
6 } 1 7 70 20 49 392 128
8 80 24 64 576 256
N-1
o) 9 90 29 81 810 512
Open form: T (n) = 3?_-01 +3 10 100 33 100 1000 1024
Closed form: T(n) =3n+3
2. Select f(n) .
Let f(n)=n o0
3. Findchnandc O(N log N)
(M) O(N**2)
Crip = lIMm ——— —— O(N**3)
n®¥ f (n) —— O(2**N)
. 3n+3
Crin = lIM =3 1200
n® ¥ n
c=c, +1 1000 /
c=3+1=4 800
4. Findng _ / /
Solve T(n) = cf (n) Z 600
3n+3=4n / /
n=3 400 / /
O)) T T)))))
— ™ n N~ (o]
N

Figure 1. Sample values for variousf(n)

Data Structures Lectures7
CS 3613 Algorithm Analysis

Goal: We want to verify our analytical estimation of time complexity. Our solution isto design two
functions. One function produces time complexity using our analytical model and the other function
computes an empirical value.

int analytical (int n)
{ return3*n+3;

}
int empirical(int N)
{ intt=0;
int a,sum;
Sum=0; t++;
a=0; t++;
while (a<n) { t++;
SUMH+; t++;
a++, t++;
} t++;
returnt;
}

Data Structures
CS 3613

Example 2: Binary Search

i
/lclass List defines the attributes of alist of integers.

/Nntegers are stored in ascending order. Element L[0] isasentinel. The sentinel
/listhe smallest integer. The sentinel isnot inthelist.

Lectures7

Algorithm Analysis

Il
classList {
int size; /INumber of available elements
int N; /INumber of occupied elements
int* L; /IPaints to storage for thelist
public:
List(int sz=100);
~List()
class FullException { };
class EmptyException { };
bool IsFull(void);
bool ISEmpty(void);
void Insert(int key);
void Remove(int key);
int Search(int key)
|3
Line Code
1 int List::Search(int key)
2 { intlo=1, hi=N;
3 while (lo<=hi) {
4 int m=(lo+hi)/2;
5 if (key==L[m]) returnm;
6 if (key<L[m])
7 hi=m-1,
8 else
9 lo=m+1,;
10 }
11 return0;
2}
L[O] L[1] L[2] L[3] L[4] L[5] L[6] L[7] L[8]
11 2 33 44 55 66 7 83
lo, hi, lo<=hi, m key L[m] key==L[m] key<L[m] m-1 key>L[m] m+1
lo hi lo<=hi m key L[m] key key m-1 key m+1
== < >
L[m] L[] L[m]
1 8 yes 4 33 44 no yes 3
1 3 yes 2 33 22 no no yes 3
3 3 yes 3 33 33 yes
lo hi lo<=hi m key L[m] key key m1 key m+1
== < >
L[m] L[] L[m]
1 8 yes 4 A 44 no yes 3
1 3 yes 2 A 22 no no yes 3
3 3 yes 3 34 33 no yes 4
4 3 no

Data Structures Lectures7
CS 3613 Algorithm Analysis

Algorithm Analysis of Binary Search

Line Code Cost

1 int List: :Search(int key) 0

2 { intlo=1, hi=N; 2

3 while (lo<=hi) { k

4 int m=(lo+hi)/2; 3k

5 if (key==L[m]) returnm; k

6 if (key<L[m]) k

7 hi=m-1,; 2

8 else 0

9 lo=m+1; 2k

10 } 1

11 return O; 0

12 } 0
Total 8k+3

Let k be the number of times the while-loop on lines 3 through 10 iterates.

The number of elementsthat could match the key is halved every iteration. Eventually asingle element is
selected. If thelast element does not match the key then the while-loop terminates. Variable lo exceeds
variable hi.

1 Let N bethe number of elementsin thelist to search. Let N = N, the number of elements to
searchinitially.

n
2. The number of elements to search after the first iteration is no morethan N, = ?0 .

3. Inasimilar way the number of elements to search after the second iteration is no more than

Ny

n .
2 2 22

n.
4. Ingeneral we define the recurrence relation N, ,; = E' Ny =N,

n
5. Thesolutionto therecurrencerelationis N; = —

6. Weknow that eventually the number of elementsto search will be reduced to one on, say, the
k ™ iteration, n,=1.
n
7. Further, N, = o =1

8 1£-L

2k
9. 2“£nb k£log,n

Thelargest valueof k is [0g, N

1. T(n)=8log,n+3
2 f(n)=log,n

Data Structures Lectures7
CS 3613 Algorithm Analysis

_ T(n) _ - 8log,n+3 _
mooney f(n) ne¥ |092n
4. T(ny) £cf(n,)
41. 8log, n, +3£ 9log, n,
42. log,n,3 3
43. n,3 2°

8,c=9

