Data Structures Lecture6

CS 3613 Program Structure and M akefiles
Translation Process
1. Macro Processor: Source.cpp is expanded (Sour ce.cpp)

by the macro processor. All macros and
#define's are replaced by C++ code.

2. C++ Language Compiler: Source.cpp, A
having all macro directives removed, is C++ Compiler
translated into object representation. Only
identifiers that are defined elsewhere remain Macro processor

in plain text form.
3. Linkage Editor Source.o is combined with

C++ libraries and other .o files. Externa C++ Compiler
references are resolved. An executable file
is created |
Notes: g++ -C -g Sour ce.cpp
1. -g option directs the compiler to include
information for the Source debugger, gdb C source.o)

2. -c option directs the compiler to produce a
relocatable object file. External references
are not resolved

3. -E option directs the compiler to stop after
invoking the macro processor. To view the Linkage Editor
result of the macro processor phase: |
$g++ -E Source.cpp > Source.m g++ -0 executable Source.o -Im

4. -0 option directs the linker to assign the
name following the option to the executable
file produced. For example, (executable)
$g++ -0 p0l1 pOl.o List0Ol.0 Figure 1. Translation Process
directs the linker to name the executable file
pOL.

5. The linker (linkage editor) is invoked when
all the input files have a .o suffice - when all
the input files are rel ocatabl e objects.

Data Structures Lecture6
CS 3613 Program Structure and M akefiles

Programs consisting of multiple Sour ce files

1. Compileall Sourcefiles.
a $g++-c-g pOl.cpp
b. $g++-c -g Radix0Ol.cpp
c. $g++-c-gListOl.cpp
2. Link all objects
a. $g++-0p01 p0l.o Radix0l.0 List0l.0 -Im

(p0l1.cpp) < Radix01.cpp) < ListOl.cpp)

y y y
C++ Compiler C++ Compiler C++ Compiler

g++ -c -g pOl.cpp g++-c-gRadixOl.cpp g++-c-gListOl.cpp

Radix01.0 ListOl.0)

Linkage Editor

g++ -0 p01 pOl.o Radix0l.0 List0l.0-Im

pOl
Figure2. Translation Diagram

Function prototypes

1. Inform the compiler how to call afunction.

2. Inform the compiler functions may be defined elsewhere

3. Validate function prototypes against actual function definitions

File organization.

File description comment
Author identification comment
Standard C++ Libraries
Application includes

Macro definitons

File global data

File functions

Nogah~wdE

Include Files

Theincludefile defines the interface to the abstract data type.

The .cpp file contains the implementation of the ADT

Included in file that exploits abstract datatype.

Informs compiler that ADT functions are not defined in thisfile.

Directs compiler how to call functions, number and type of parameters and return type

Included in file that defines abstract data type. Validates functions n interface (.h file) against
definition in.cpp file.

OSarwWN PP

Data Structures Lecture6

CS 3613 Program Structure and M akefiles
M akefiles
1. Form
target file: Sourcefiles
instructions
2. Filep0Olmake contains
p01: pOl.0 Radix01.0 List01.0
g++ -0 p01 pOl.0 Radix01.0 List0l.0-Im
pOl.o: pO0l.cpp Radix01.h

g++ -c -g pOl.cpp
Radx01.0: Radix01.cpp Radix01.h ListOl.h
g++ -c -g Radix01.cpp
ListOl.0: ListOl.cpp List01.h
g++ -c-g ListOl.cpp
3. Invoking makefiles
$ make-f p0lmake

