
Data Structures Lecture 6
CS 3613 Program Structure and Makefiles

 1

Translation Process
1. Macro Processor: Source.cpp is expanded

by the macro processor. All macros and
#define's are replaced by C++ code.

2. C++ Language Compiler: Source.cpp,
having all macro directives removed, is
translated into object representation. Only
identifiers that are defined elsewhere remain
in plain text form.

3. Linkage Editor Source.o is combined with
C++ libraries and other .o files. External
references are resolved. An executable file
is created

Notes:
1. -g option directs the compiler to include

information for the Source debugger, gdb
2. -c option directs the compiler to produce a

relocatable object file. External references
are not resolved

3. -E option directs the compiler to stop after
invoking the macro processor. To view the
result of the macro processor phase:

 $ g++ -E Source.cpp > Source.m
4. -o option directs the linker to assign the

name following the option to the executable
file produced. For example,

 $ g++ -o p01 p01.o List01.o
directs the linker to name the executable file
p01.

5. The linker (linkage editor) is invoked when
all the input files have a .o suffice - when all
the input files are relocatable objects.

macro processor

C++ Compiler

C++ Compiler

Source.cpp

source.o

Linkage Editor

executable

g++ -c -g Source.cpp

g++ -o executable Source.o -lm

Figure 1. Translation Process

Data Structures Lecture 6
CS 3613 Program Structure and Makefiles

 2

Programs consisting of multiple Source files

1. Compile all Source files.

a. $g++ -c -g p01.cpp
b. $g++ -c -g Radix01.cpp
c. $g++ -c -g List01.cpp

2. Link all objects
a. $g++ -o p01 p01.o Radix01.o List01.o -lm

C++ Compiler C++ Compiler C++ Compiler

p01.cpp Radix01.cpp List01.cpp

p01.o Radix01.o List01.o

Linkage Editor

p01

g++ -o p01 p01.o Radix01.o List01.o -lm

g++ -c -g p01.cpp g++ -c -g Radix01.cpp g++ -c -g List01.cpp

Figure 2. Translation Diagram

Function prototypes
1. Inform the compiler how to call a function.
2. Inform the compiler functions may be defined elsewhere
3. Validate function prototypes against actual function definitions

File organization.
1. File description comment
2. Author identification comment
3. Standard C++ Libraries
4. Application includes
5. Macro definitons
6. File global data
7. File functions

Include Files
1. The include file defines the interface to the abstract data type.
2. The .cpp file contains the implementation of the ADT
3. Included in file that exploits abstract data type.
4. Informs compiler that ADT functions are not defined in this file.
5. Directs compiler how to call functions, number and type of parameters and return type
6. Included in file that defines abstract data type. Validates functions in interface (.h file) against

definition in .cpp file.

Data Structures Lecture 6
CS 3613 Program Structure and Makefiles

 3

Makefiles
1. Form
 target file: Source files
 instructions
2. File p01make contains

p01: p01.o Radix01.o List01.o
g++ -o p01 p01.o Radix01.o List01.o -lm

p01.o: p01.cpp Radix01.h
g++ -c -g p01.cpp

 Radix01.o: Radix01.cpp Radix01.h List01.h
 g++ -c -g Radix01.cpp

List01.o: List01.cpp List01.h
g++ -c -g List01.cpp

3. Invoking makefiles
$ make -f p01make

