
Data Structures Lecture 5
CS 3613 List Implementation

 1

class Element definition and implementation
struct Element {
 Element* next; //Points to the next Element (closer to the tail)
 char* id; //Points to the identifier referenced by this
 //Element
 Element(char* k); //Element constructor
 ~Element(); //Element destructor
 void Print(ostream& o); //Prints the identifier
 int Length(void); //Retains the length of identifier
};
class List definition and implementation.
class List {
 Element* head; //Points to the head of the list – the oldest element
 Element* tail; //Points to the tail of the list – the newest element
 Element* cursor; /Used to traverse the list (First, Next, Current)

int longest; //Recor ds the length of the longest identifier
 //Initially 0, assigned in function Scan

 void Kill(Element* e); //Serial killer, reclaims storage for all elements on
 //the list
public:
 struct ListException {
 ListException(char* m)
 { cout << endl;
 cout << “I am the list and I am “ << m << “.”;
 cout << endl;
 }
 };
 List(); //Constructor
 ~List(); //Destructor
 void TailInsert(Element* e); //Appends elements on the tail of the list
 Element* HeadRemove(void); /Removes elements from the head of the list
 bool IsEmpty(void); //Determines if the list is empty
 void Scan(istream& i); //Inserts elements from stream i
 void Print(ostream& o,char* title); /Prints elements on the list
 void First(void); //Positions the cursor on the head element
 void Next(void); //Moves the cursor to the next element. Next
 //means closer to the tail
 bool Eol(void); //Determines if the cursor is past the tail element.
 //Determines if the cursor is at the End Of List
 Element* Current(void); //Returns a pointer to the current element.
 //Returns a pointer to the element referenced by
 //the cursor
 int Longest(voi d); //Returns the length of the longest identifier
 void Join(List& L); //Joins List L to this list
};

Data Structures Lecture 5
CS 3613 List Implementation

 2

1. The constructor for class List.
List::List():head(0),tail(0),cursor(0),longest(0){}

2. The destructor for class List.
List::~List(){Kill(head);}

void List::Kill(Element* e)
{ while (e) { //The list is terminated with a null-pointer
 //Remove all elements having a valid pointer
 Element* p=e; //The current element e becomes the previous p
 e=e->next; //Go on to the next element
 delete p; //Remove the current/previous element
 }
}

3. Function TailInsert.
void List::TailInsert(Element* e)
{
 if (head) { //Second and subsequent elements
 tail->next=e;
 } else { //First element on the list
 head=e;
 }
 tail=e;
 e->next=0; //Terminate the list
}

4. Function HeadRemove.
Element* List::HeadRemove(void)
{ if (IsEmpty()) throw ListException(“empty”);
 Element* e=head;
 if (head==tail) {
 head=tail=0;
 } else {
 head=head->next;
 }
 return e;
}

5. Function Scan.
void List::Scan(istream& i)
{ for (;;) {
 char k[255];
 i >> k;
 if (i.eof()) break;
 if (strlen(k)>longest) longest=strlen(k);
 Element* e=new Element(k);
 TailInsert(e);
 }
}

Data Structures Lecture 5
CS 3613 List Implementation

 3

6. Function Print.
void List::Print(ostream& o,char* title,int pass)
{ o << endl << title;

if (pass>=0) o << “ “ << pass;
 for (First();!IsEol();Next()) {
 Element* e=Current();
 o << endl;
 if (e) e->Print(o); else o << "nil";
 }
 o << endl;
}

7. Function First.
void List::First(void){cursor=head;}

8. Function IsEol.
bool List::IsEol(void){return cursor==0;}

9. Function Next.
void List::Next(void){if (cursor) cursor=cursor->next;}

10. Function Current.
Element* List::Current(void){return cursor;}

11. Function Join.
void List::Join(List& L)
{ if (L.IsEmpty() && IsEmpty()) return;
 if (L.IsEmpty() && !IsEmpty()) return;
 if (!L.IsEmpty() && IsEmpty()) {
 head=L.head; tail=L.tail; cursor=L.cursor; longest=L.longest;
 L.head=L.tail=L.cursor=0;L.longest=0;
 }
 if (!L.IsEmpty() && !IsEmpty()) {
 tail->next=L.head;
 tail=L.tail;
 L.head=L.tail=L.cursor=0;L.longest=0;
 }
}

12. Function IsEmpty.
bool List::IsEmpty(void){return head==0;}

