Data Structures Lecture5
CS 3613 List Implementation

class Element definition and implementation
struct Element {

Element* next; /[Pointsto the next Element (closer to thetail)
char* id; /IPointsto the identifier referenced by this
//[Element
Element(char* k); //[Element constructor
~Element(); //[Element destructor
void Print(ostream& 0); /IPrintstheidentifier
int Length(void); /IRetainsthelength of identifier
|3
class List definition and implementation.
classList{
Element* head; /IPointsto the head of thelist —the oldest element
Element* tail ; /[Pointstothetail of thelist —the newest element
Element* cursor; /Used to traversethelist (First, Next, Current)
int longest; /IRecor dsthelength of the longest identifier
[Initially 0, assigned in function Scan
void Kill(Element* €); /ISerial Killer, reclaims storage for all elementson
/lthelist
public:
struct ListException {
ListException(char* m)
{ cout<<endl;
cout <<*“l amthelist and | am* <<m<<*".";
cout <<endl;
}
|3
List(); /IConstructor
~List(); /IDestructor
void Taillnsert(Element* e); /IAppends elementson thetail of thelist
Element* HeadRemove(void); /Removes elements from the head of thelist
bool IsEmpty(void); /IDeterminesif the list isempty
void Scan(istream& i); /lInserts elementsfrom stream i
void Print(ostream& o,char* title); /Prints elements on thelist
void First(void); /IPositions the cursor on the head element
void Next(void); /IMovesthe cursor to the next element. Next
/Imeans closer to the tail
bool Eol(void); /IDeterminesif the cursor is past the tail element.
/IDeterminesif the cursor isat the End Of List
Element* Current(void); /IReturnsa pointer to the current element.
/IReturnsa pointer to the element referenced by
/lthe cur sor
int Longest(voi d); /IReturnsthelength of the longest identifier
void Join(List& L); /1JoinsList L tothislist
|3

Data Structures Lecture5
CS 3613 List Implementation

1

2,

The constructor for classList.
List::List():head(0),tail (0),cursor(0),longest(0){}
Thedestructor for classList.
List::~List(){Kill(head);}

void List::Kill(Element* €)
{ while(e){ /IThelist isterminated with a null-pointer
/IRemove all elements having a valid pointer
Element* p=e; /IThe current element e becomes the previous p
e=e->next; /IGo on to the next element
deletep; /IRemovethe current/previous element
}

}

Function Taillnsert.

void List:: Taillnsert(Element* €)

if (head) { //Second and subsequent elements
tail->next=e;
} else{ /IFirst element on the list
head=g;
}
tail=e;
e->next=0; /ITerminatethelist
}
Function HeadRemove.
Element* List::HeadRemove(void)
{ if (Ismpty()) throw ListException(“ empty”);
Element* e=head;
if (head==tail) {
head=tail =0;
} else{
head=head->next;
}

returne;
}
Function Scan.
void List::Scan(istream& i)
{ for (G){
char k[255];
i >>k;
if (i.eof()) break;
if (strlen(k)>longest) longest=strlen(k);
Element* e=new Element(k);
Taillnsert(e);

Data Structures Lecture5
CS 3613 List Implementation

6. Function Print.
void List: :Print(ostream& o,char* title,int pass)
{ o<<endl <<title
if (pass>=0) 0 << * * << pass;
for (First();!IsEol(); Next()) {
Element* e=Current();
o<<endl;
if (6) e>Print(0); elseo << " nil";
}
o <<endl;
}
7. Function First.
void List: :First(void){cursor=head;}
8. Function IsEal.
bool List::IsEol(void){return cursor==0;}
9. Function Next.
void List: :Next(void){if (cursor) cursor=cursor->next;}
10. Function Current.
Element* List::Current(void){return cursor;}
11. Function Join.
void List::Join(List& L)
{ if(L.IsEmpty() & & IsEmpty()) return;
if (L.IsEmpty() & & 'IsEmpty()) return;
if (L.IsEmpty() & & IsEmpty()) {
head=L.head; tail=L.tail; cursor=L.cursor; longest=L.longest;
L.head=L tail=L.cursor=0;L.longest=0;

}
if ('L.IsEmpty() & & 'IsEmpty()) {
tail->next=L.head;
tail=L.tail;
L.head=L .tail=L.cursor=0;L.longest=0;
}

}
12. Function IsEmpty.

bool List::IsEmpty(void){return head==0;}

