Data Structures Lecture4
CS 3613 List Overview

Review.

Radix sort

void Radix::SortMgr(istream& i, ostream& 0)

1. DeclarelistL

2. Readtheidentifiersinstreami into list L. Use member function Taillnsert to put theidentifiersin the
list.

3. Declareinteger p. Variable p isthe character position that is used to select the bucket where an
identifier isinserted

4. Declarevariablelength and initialize it to one less than the length of the longest identifier in thelist.

5. for p=length downto O do BucketSort(L,p);

6. Writelist| output stream o.

void Radix::BucketSort(List& L, int p)
1. while listL isnot empty do
1.1. Use member function HeadRemove to remove element e from the head of list L.
1.2. if thelength of the identifier in element e is shorter than position pthen
1.21. use member function Taillnsert to append element e on the list for the al pha bucket
1.3. else
1.3.1. use member function Taillnsert to append element e on the list for the bucket whose
index is given by the integer code the corresponds the p™ letter of the identifier in element
e
2. Use member functionjoin tojoinall the bucketsto list L.

Definitions:

1. head: Thehead of thelist points to the oldest element on thelist.

2. tail: Thetail of thelist pointsto the newest element on thelist.

Requirements:

1. Lists are created by appending elements one at a time onto the tail of the list. Call the operation of
appending an element Taill nsert.

2. Thelist of unsorted identifiers is processed one element at a time starting with the head and moving to
thetail. Elements are removed from thelist inthe order discussed. Call the operation HeadRemove.

3. Theliststhat form the buckets arejoined. The composite list replacesthe original list that was sprayed
to the buckets and is now reordered by joining the liststogether. Call the operation Join.

Element
next id

Element* char*

Figurel. Diagram of anelement.

struct Element {
Element* next;
char* id;
Element(char* k):next(0)
{ id=new char|strlen(k)+1];
strepy(id,k);

}
~Element() { if (id) delete]] id; }

Figure 2. C++ Declaration for an Element.

Data Structures Lecture4

CS3613 List Overview

head Element

Element* next id

Element* char*

i Im|a|t
A

Element

next id

Element* char*

» aln

e
e
]
tail Element
Element* next id
Element* char*
»t|e|n

Figure 3. Diagram of alist.

classList{
Element* head;
Element* tail ;

void Kill(Element* e);
public:

List();

~List();

bool 1sEmpty(void);

Element* HeadRemove(void);

void Taillnsert(Element* e);

int Longest(void);

void Scan(istream& i);

void Print(ostream& o, char* title,int id);

void Join(List& L);

Figure4.classlist.

Data Structures Lecture4
CS 3613 List Overview
Member Description

Element* head

Element* tail

voidKill(elment* e)

List()

~List()

bool IsEmpty(void)

Element* HeadRemove(void)
void Taillnsert(Element* €)
int Longest(void
void Scan(istream i)
voidPrint

(ostream& o

, Char * title

Jintid

)
voidJoin(List& L)

Member head points to the oldest element on the list. Member head
pointsto thefirst element put on thelist.

Elements are linked from head to tail and terminated at the tail. The
pointer to the next element in the element at the tail isNULL.

Member tail points to the newest element on the list. Member tail
pointsto the last element put on the list.

Member function is called by the destructor ~List(). Member function
Kill deletes all elements that remain on the list. As elements are
removed, the destructor for type element is called. Storage for the
identifiersin the element isreclaimed.

Member function List() is the constructor. The list is initialized by
assigning NULL valuesto membershead and tail.

Member function ~List() is the destructor. This list is destroyed by
reclaiming storage for elements and their identifiers. The destructor
~List() calls function Kill to reclaim storage for the elements on this
list. Member function Kkill, in turn, implicitly calls the destructor
~Element() to reclaim storage for identifiers.

Member function ISEmpty determinesif thislist isempty. If thelistis
empty member function empty returns 1 (true), otherwise it returnsa0
(false).

Member function HeadRemove removes the oldest element from this
list. A pointer to the element removed is returned to the caller.
Member function Taillnsert appends the element referenced by
parameter eto thetail of thislist.

Member function Longest returns the length of the longest identifier
in an element on thislist.

Member function Scan readsinput file stream i. Identifiersin stream i
are separated by white space. Identifiersin stream i are put on thelist.
Member function print formats and writes identifiers on the list in
output file stream o. A title and an integer identifying (id) thelist are
printed before identifiers on the list are printed. The list is printed
from head to tail.

Member function Join appends list L to thislist. ListL isemptied.

Table 1. Member descriptions of class List

Data Structures

CS 3613

Notes:

1. Thevalue of the head and tail pointersis NULL for an empty list.

head

Element*

Element*

Element

next

id

Element* char*

tail

Element*

Figure5. Before inserting an element on an empty list

2. Parameter e of member function Taillnsert references the element to be appended.

Notes:

head Element tail
Element* next id Element*
- Element* char* P
m
a

Figure 6. After inserting an element on an empty list

1. Thehead andtail point to the new element after inserting the first element on alist.
2. Parameter e isdiscarded after function Taillnsert returns.

Lecture4
List Overview

Data Structures

Lecture4
CS 3613 List Overview

head Element
Element* next id
| Element* char*
i PIm|aft
Element
next id
Element* char*
| PIm|eft
°
]
]
tail Element
Element* next id
| Element* char*
i aln
e Element
Element* next id
| Element* char*
i a|nft
Figure7. Beforeinserting an element on a non-empty list
Notes:
1. Thenon-empty listisillustrated by thelist that begins with the element that points to identifier mat and

ends with the identifier an. Member head points to the element that references mat and member tail
points to the element that referencesan.

2. Parameter e pointsto the element to be appended to thislist.

Data Structures Lecture4

CS3613 List Overview
head Element
Element* next id
Element* char*
i PIm|a|t
Y
Element
next id
Element* char*
Im|e |t

e
.
o
Element
next id
Element* char*
» al|n
A
tail Element
Element* next id
Element* char*
la|n|t
Figure8. After inserting an element on a non-empty list
Notes:
1. A pointer to the new element at the tail of the list is assigned to member next in the penultimate
element.

2. A pointer to the new element at the tail of thelist is assigned to member tail.
3. Thelististerminated by assigning aNULL pointer to member next in the element at the tail of thelist.

Data Structures

CS3613
e
Element*
head Element
Element* next id
q Element* char*
Element
next id
Element* char*
I
e
.
L J
tail Element
Element* next id
q Element* char*

Notes:

r

a

n

Figure 9. Before removing an element on alist having more than one element

Lecture4
List Overview

1. A pointer to the element at the head of the list will be assigned to local variable e and returned to the

caler.

Data Structures Lecture4

CS3613 List Overview
e Element
Element* next id
| Element* char*
»Im|alt
head Element
Element* next id
Element* char*
»Im|e|t

e
e
[
tail Element
Element* next id
| Element* char*
M aln

Figure 10. After removing an element on alist having more than one element
Notes:

1. A pointer to the succeeding element is assigned to member head.

2. A pointer to the element that formerly headed the list is assigned to local variable e and returned to the
caller.

3. A NULL-valueisassigned to member e->next.

Data Structures

CS 3613
Element*
head Element tail
Element* next id Element*
R Element* char* P
m
a
t
Figure 11. Before removing an element on alist having exactly one element
Notes:

Lecture4
List Overview

1. A pointer to the last remaining element will be assigned to local variable e and returned to the caller.

2. Notethat both the head and tail point to the last remaining element.

Data Structures
CS 3613

Element*

head

Element

tail

Element*

next

Element*

Element*

char*

Figure 11. After removing an element on alist having exactly one element

Notes:
1. A NULL value is assigned to member head by copying the terminating NULL value from the last

element on thelist.

2. A NULL value must be explicitly assigned to member tail.

voidList::Join(list& 1)
if both lists are empty then return to the caller.

1
2.
3.

if thislistisnot empty and list| is empty then return to the caller

if thislistisempty and list | isnot empty then

3.1. Assign the values of membershead and tail inlist| tothis list.

3.2. Assign null values to membershead and tail in list]1.

3.3. returntothecaller.

if this list isnot empty and list1 is not empty then append list| to this list by
4.1. Assign apointer to the head of list| to the element at the tail of thislist.

4.2. Assign apointer to thetail of listl to the tail of this list.

4.3. Assign null values to membershead and tail inlistl.

4.4, returntothecaller.

10

Lecture4
List Overview

Lecture4

Data Structures
CS3613 List Overview
head Element head Element
Element* next id Element* next id
.| Element* char* | Element* char*
——t[e[nN] — 1o [mN]
y
Element Element
next id next id
Element* char* Element* char*
l — "t e[d]\] IL —1—{t[e]d[\]
a -
L] [
- L]
y
tail Element tail Element
Element next id Element* next id
Element* char* Element* char*
——{sluleN] l —1—{slule[N
L.head Element L.head Element
Element next id Element* next id
.| Element* char* Element* char*
— 1[N —T1—m[al N
y
Element Element
next id next id
Element* char* Element* char*
Il — e[\ i —T e\
a a
a -
L]]
L.tail Element L.tail Element
Element* next id Element* next id
.| Element* char* Element* char*
— (=" \ | —1—1a[\ |

Before

]

11

After

Figure 12. Case 4: appending list L to this list.

