
Data Structures Lecture 4
CS 3613 List Overview

 1

Review:
Radix sort
void Radix::SortMgr(istream& i , ostream& o)
1. Declare list L
2. Read the identifiers in stream i into list L. Use member function TailInsert to put the identifiers in the

list.
3. Declare integer p. Variable p is the character position that is used to select the bucket where an

identifier is inserted
4. Declare variable length and initialize it to one less than the length of the longest identifier in the list.
5. for p=length downto 0 do BucketSort(L,p);
6. Write list l output stream o.

void Radix::BucketSort(List& L, int p)
1. while list L is not empty do

1.1. Use member function HeadRemove to remove element e from the head of list L.
1.2. if the length of the identifier in element e is shorter than position p then

1.2.1. use member function TailInsert to append element e on the list for the alpha bucket
1.3. else

1.3.1. use member function TailInsert to append element e on the list for the bucket whose
index is given by the integer code the corresponds the pth letter of the identifier in element
e.

2. Use member function join to join all the buckets to list L.

Definitions:
1. head: The head of the list points to the oldest element on the list.
2. tail: The tail of the list points to the newest element on the list.
Requirements :
1. Lists are created by appending elements one at a time onto the tail of the list. Call the operation of

appending an element TailInsert.
2. The list of unsorted identifiers is processed one element at a time starting with the head and moving to

the tail. Elements are removed from the list in the order discussed. Call the operation HeadRemove.
3. The lists that form the buckets are joined. The composite list replaces the original list that was sprayed

to the buckets and is now reordered by joining the lists together. Call the operation Join.

Element

next id

Element* char*

Figure 1. Diagram of an element.

Figure 2. C++ Declaration for an Element.

struct Element {
 Element* next;
 char* id;
 Element(char* k):next(0)
 { id=new char[strlen(k)+1];
 strcpy(id,k);
 }
 ~Element() { if (id) delete[] id; }
}

Data Structures Lecture 4
CS 3613 List Overview

 2

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

m a t

a n

t e n

Element*

head

Element*

tail

Figure 3. Diagram of a list.

Figure 4. class list.

class List {
Element* head;

 Element* tail;

void Kill(Element* e);
public:
 List();
 ~List();
 bool IsEmpty(void);
 Element* HeadRemove(void);
 void TailInsert(Element* e);
 int Longest(void);
 void Scan(istream& i);
 void Print(ostream& o, char* title,int id);

void Join(List& L);
};

Data Structures Lecture 4
CS 3613 List Overview

 3

Member Description
Element* head Member head points to the oldest element on the lis t. Member head

points to the first element put on the list.

Elements are linked from head to tail and terminated at the tail. The
pointer to the next element in the element at the tail is NULL.

Element* tail Member tail points to the newest element on the list. Member tail
points to the last element put on the list.

void Kill(elment* e) Member function is called by the destructor ~List(). Member function
Kill deletes all elements that remain on the list. As elements are
removed, the destructor for type element is called. Storage for the
identifiers in the element is reclaimed.

List() Member function List() is the constructor. The list is initialized by
assigning NULL values to members head and tail.

~List() Member function ~List() is the destructor. This list is destroyed by
reclaiming storage for elements and their identifiers. The destructor
~List() calls function Kill to reclaim storage for the elements on this
list. Member function kill, in turn, implicitly calls the destructor
~Element() to reclaim storage for identifiers.

bool IsEmpty(void) Member function IsEmpty determines if this list is empty. If the list is
empty member function empty returns 1 (true), otherwise it returns a 0
(false).

Element* HeadRemove(void) Member function HeadRemove removes the oldest element from this
list. A pointer to the element removed is returned to the caller.

void TailInsert(Element* e) Member function TailInsert appends the element referenced by
parameter e to the tail of this list.

int Longest(void) Member function Longest returns the length of the longest identifier
in an element on this list.

void Scan(istream& i) Member function Scan reads input file stream i. Identifiers in stream i
are separated by white space. Identifiers in stream i are put on the list.

void Print
 (ostream& o
 , char* title
 ,int id
)

Member function print formats and writes identifiers on the list in
output file stream o. A title and an integer identifying (id) the list are
printed before identifiers on the list are printed. The list is printed
from head to tail.

void Join(List& L) Member function Join appends list L to this list. List L is emptied.
Table 1. Member descriptions of class List

Data Structures Lecture 4
CS 3613 List Overview

 4

Element

next id

Element* char*

Element*

head

Element*

tail

Element*

e

m

a

t

Figure 5. Before inserting an element on an empty list

Notes:
1. The value of the head and tail pointers is NULL for an empty list.
2. Parameter e of member function TailInsert references the element to be appended.

Element

next id

Element* char*

Element*

head

Element*

tail

m

a

t

Figure 6. After inserting an element on an empty list

Notes:
1. The head and tail point to the new element after inserting the first element on a list.
2. Parameter e is discarded after function TailInsert returns.

Data Structures Lecture 4
CS 3613 List Overview

 5

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element*

head

Element*

tail

Element*

e

m a t

m e t

a n

a n t

Figure 7. Before inserting an element on a non-empty list
Notes:
1. The non-empty list is illustrated by the list that begins with the element that points to identifier mat and

ends with the identifier an. Member head points to the element that references mat and member tail
points to the element that references an.

2. Parameter e points to the element to be appended to this list.

Data Structures Lecture 4
CS 3613 List Overview

 6

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element*

head

Element*

tail

m a t

m e t

a n

a n t

Figure 8. After inserting an element on a non-empty list
Notes:
1. A pointer to the new element at the tail of the list is assigned to member next in the penultimate

element.
2. A pointer to the new element at the tail of the list is assigned to member tail.
3. The list is terminated by assigning a NULL pointer to member next in the element at the tail of the list.

Data Structures Lecture 4
CS 3613 List Overview

 7

Element*

e

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element*

head

Element*

tail

m a t

m e t

a n

Figure 9. Before removing an element on a list having more than one element
Notes:
1. A pointer to the element at the head of the list will be assigned to local variable e and returned to the

caller.

Data Structures Lecture 4
CS 3613 List Overview

 8

Element*

e

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element*

head

Element*

tail

m a t

m e t

a n

Figure 10. After removing an element on a list having more than one element
Notes:
1. A pointer to the succeeding element is assigned to member head.
2. A pointer to the element that formerly headed the list is assigned to local variable e and returned to the

caller.
3. A NULL-value is assigned to member e->next.

Data Structures Lecture 4
CS 3613 List Overview

 9

m

a

t

Element

next id

Element* char*

Element*

head

Element*

tail

Element*

e

Figure 11. Before removing an element on a list having exactly one element

Notes:
1. A pointer to the last remaining element will be assigned to local variable e and returned to the caller.
2. Note that both the head and tail point to the last remaining element.

Data Structures Lecture 4
CS 3613 List Overview

 10

Element

next id

Element* char*

Element*

head

Element*

tail

Element*

e

m

a

t

Figure 11. After removing an element on a list having exactly one element

Notes:
1. A NULL value is assigned to member head by copying the terminating NULL value from the last

element on the list.
2. A NULL value must be explicitly assigned to member tail.

void List::Join(list& l)
1. if both lists are empty then return to the caller.
2. if this list is not empty and list l is empty then return to the caller
3. if this list is empty and list l is not empty then

3.1. Assign the values of members head and tail in list l to this list.
3.2. Assign null values to members head and tail in list l.
3.3. return to the caller.

4. if this list is not empty and list l is not empty then append list l to this list by
4.1. Assign a pointer to the head of list l to the element at the tail of this list.
4.2. Assign a pointer to the tail of list l to the tail of this list.
4.3. Assign null values to members head and tail in list l.
4.4. return to the caller.

Data Structures Lecture 4
CS 3613 List Overview

 11

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element

next id

Element* char*

Element*

head

Element*

head

Element*

tail

Element*

tail

m a t

m e t

a n

L.head

Element*

L.head

Element*

L.tail

Element*

L.tail

Element*

m a t

m e t

a n

t to om m

t te ed d

s su ue e

Before After
Figure 12. Case 4: appending list L to this list.

