Data Structures
CS 3613

A radix sort sorts a list of identifiers. An
iterative process is used to sort the list. The
number of iterations is equal to the number of
characters in the longest identifier. Sorting
begins with the rightmost or least significant
character in the identifier. A bucket is created
for each character in the alphabet of characters
used to make identifiers. The buckets are placed
in lexicographic order. ldentifiers are placed in
the bucket associated with their rightmost
character in the first iteration. After identifiers
have been placed in buckets, a new list is
created. The new list is partially ordered. The
new list consists of the identifiers in the buckets
concatenated in lexicographic order. For the
second iteration, the next to last character in the
identifier is selected. The foregoing process is
repeated, assigning identifiers to buckets
according to their penultimate character and
reassembling the list by concatenating the
bucketsin lexicographic order.
Consider the following examples:

Iteration 1, rightmost character.
List: 64, 8, 216, 512, 27,729, 0, 1, 343, 125

Lecture3
Radix Sat

Iteration 3, leftmost character.
List: 0, 1, 8, 216, 512, 729, 27, 125, 343, 64

Bucket Identifier

0,18 27,64

125

216

343

512

729

O(o|N|O|(O|R|W[IN|FL|O

Bucket Identifier

0

1

512

343

125

216

27

8

O(o|N|oO|(O|R|W[IN|FL|O

729

Iteration 2, second character from rightmost.
List: 0, 1, 512, 343, 64, 125, 216, 27, 8, 729

Bucket Identifier
0 0,18
1 216, 512
2 729, 27,125
3
4 343
5
6 64
7
8
9

Sorted List: O, 1, 8, 27, 64, 125, 216, 343, 512,
729

Note that the rightmost character is used in
the first iteration to place identifiers in buckets.
For example, identifier 64 is placed in bucket 4.
Identifiers having fewer than three characters are
assumed to have leading zeros. For example, the
identifier 1, is assumed to be 001.

The list is reconstituted for iteration 2. The
identifiers are reordered so they appear in the
order in which the buckets are ordered. Bucket 0
is first so the identifier in bucket zero is first on
the list. Subsequent identifiers are placed on the
list in the same order as they occur in the
buckets.

Note that the middle character is used to sort
identifiers in the second iteration. ldentifier 512
is placed in the bucket marked 1.

The list is reconstructed for iteration 3 as it
was for the second iteration.

Data Structures
CS 3613

Another example:

List: mat, an, ant, a, am, tan, ten, en, em, met

Rule: if length(id)<position put id in bucket a.

Position=3
List: mat, an, ant, a, am, tan, ten, en, em, met
Bucket Identifier
a an, a, am, en, em
a
e
m
n tan, ten
t mat, ant, met
Position=2
List: an, a, am, en, em, tan, ten, mat, ant, met
Bucket I dentifier
a a
a tan, mat
e ten, met
m am, em
n an, en, ant
t
Position=1
List: a, tan, mat, ten, met, am, em, an, en, ant
Bucket Identifier
a
a a, am, an, ant
e em, en
m mat, met
n
t tan, ten

Sorted list: a, am, an, ant, em, en, mat, met, tan,

ten

Lecture3
Radix Sat

Radix sort
void Radix::SortMgr(istream& i, ostream& o)

1
2

5.
6.

Declarelist L

Read theidentifiersin stream i into list L.
Use member function Tailinsert to put the
identifiersin thelist.

Declareinteger p. Variablep isthe
character position that is used to select the
bucket where an identifier isinserted
Declare variable length and initialize it to
one less than the length of the longest
identifier in thelist.

for p=length downto 0 do BucketSort(l,p);
Write list L output stream o.

voidBucketSort(List& L, int p)

1

while listL is not empty do

1.1. Use member function HeadRemove to
remove element e from the head of list
L.

1.2. if the length of theidentifier in element
eisshorter than position pthen
1.2.1. use member function
Taillnsert to append element e on the
list for the alpha bucket

13. else
1.3.1. use member function

Taillnsert to append element e

on thelist for the bucket whose

index is given by the integer

code the corresponds the p'h

letter of the identifier in

element e.

Use member function Join to join all the

bucketsto list L.

