
Data Structures Lecture 3
CS 3613 Radix Sort

 1

A radix sort sorts a list of identifiers. An
iterative process is used to sort the list. The
number of iterations is equal to the number of
characters in the longest identifier. Sorting
begins with the rightmost or least significant
character in the identifier. A bucket is created
for each character in the alphabet of characters
used to make identifiers. The buckets are placed
in lexicographic order. Identifiers are placed in
the bucket associated with their rightmost
character in the first iteration. After identifiers
have been placed in buckets, a new list is
created. The new list is partially ordered. The
new list consists of the identifiers in the buckets
concatenated in lexicographic order. For the
second iteration, the next to last character in the
identifier is selected. The foregoing process is
repeated, assigning identifiers to buckets
according to their penultimate character and
reassembling the list by concatenating the
buckets in lexicographic order.

Consider the following examples:

Iteration 1, rightmost character.
List: 64, 8, 216, 512, 27, 729, 0, 1, 343, 125

Bucket Identifier
0 0
1 1
2 512
3 343
4 64
5 125
6 216
7 27
8 8
9 729

Iteration 2, second character from rightmost.
List: 0, 1, 512, 343, 64, 125, 216, 27, 8, 729

Bucket Identifier
0 0, 1, 8
1 216, 512
2 729, 27, 125
3
4 343
5
6 64
7
8
9

Iteration 3, leftmost character.
List: 0, 1, 8, 216, 512, 729, 27, 125, 343, 64

Bucket Identifier
0 0, 1, 8, 27, 64
1 125
2 216
3 343
4
5 512
6
7 729
8
9

Sorted List: 0, 1, 8, 27, 64, 125, 216, 343, 512,
729

Note that the rightmost character is used in
the first iteration to place identifiers in buckets.
For example, identifier 64 is placed in bucket 4.
Identifiers having fewer than three characters are
assumed to have leading zeros. For example, the
identifier 1, is assumed to be 001.

The list is reconstituted for iteration 2. The
identifiers are reordered so they appear in the
order in which the buckets are ordered. Bucket 0
is first so the identifier in bucket zero is first on
the list. Subsequent identifiers are placed on the
list in the same order as they occur in the
buckets.

Note that the middle character is used to sort
identifiers in the second iteration. Identifier 512
is placed in the bucket marked 1.

The list is reconstructed for iteration 3 as it
was for the second iteration.

Data Structures Lecture 3
CS 3613 Radix Sort

 2

Another example:
List: mat, an, ant, a, am, tan, ten, en, em, met

Rule: if length(id)<position put id in bucket α.

Position=3
List: mat, an, ant, a, am, tan, ten, en, em, met

Bucket Identifier
α an, a, am, en, em
a
e
m
n tan, ten
t mat, ant, met

Position=2

List: an, a, am, en, em, tan, ten, mat, ant, met
Bucket Identifier

α a
a tan, mat
e ten, met
m am, em
n an, en, ant
t

Position=1

List: a, tan, mat, ten, met, am, em, an, en, ant
Bucket Identifier

α
a a, am, an, ant
e em, en
m mat, met
n
t tan, ten

Sorted list: a, am, an, ant, em, en, mat, met, tan,
ten

Radix sort
void Radix::SortMgr(istream& i, ostream& o)
1. Declare list L
2. Read the identifiers in stream i into list L.

Use member function TaiIinsert to put the
identifiers in the list.

3. Declare integer p. Variable p is the
character position that is used to select the
bucket where an identifier is inserted

4. Declare variable length and initialize it to
one less than the length of the longest
identifier in the list.

5. for p=length downto 0 do BucketSort(l,p);
6. Write list L output stream o.

void BucketSort(List& L, int p)
1. while list L is not empty do

1.1. Use member function HeadRemove to
remove element e from the head of list
L.

1.2. if the length of the identifier in element
e is shorter than position p then
1.2.1. use member function
TailInsert to append element e on the
list for the alpha bucket

1.3. else
1.3.1. use member function

TailInsert to append element e
on the list for the bucket whose
index is given by the integer
code the corresponds the pth
letter of the identifier in
element e.

2. Use member function Join to join all the
buckets to list L.

