
Data Structures Lecture 2
CS 3613 Command Line Arguments

 1

Problem: We want to parameterize our programming projects so that files containing input data and files
providing results are named on the command line. If such files are not provided on the command line, we
want our program to prompt for such files.

Programming project p00, for example, accepts a single input file and produces a single output file. Under
ordinary circumstances the command line would look like:

$ p00 i00.dat o00.dat1

1. File p00 is the first string that appears on the command line and contains the executable form of

project 1.
2. File i00.dat is the second string that appears on the command line and contains input data. File i00.dat

is the first command line parameter.
3. File o00.dat is the third string that appears on the command line and contains results produced by

project p00. File o00.dat is the second command line parameter.

Another acceptable way to execute project p00 is:

$ p00 i00.dat
Enter the output file name: o00.dat

1. File p00 is the first string that appears on the command line contains the executable form of project 1.
2. File i00.dat is the second string that appears on command line and contains input data
3. The prompt

Enter the output file name:

is produced by the program p00 when fewer than three strings appear on the command line.

4. The response, o00.dat, is entered by the user.

The third and last way program p00 can be invoked is:

$ p00
Enter the input file name: i00.dat
Enter the output file name: o00.dat

1. File p00 is the first and only string that appears on the command line contains the executable form of

project 1.
2. The prompt

Enter the input file name :
is produced by program p00 when only one string appears on the command line.

3. The user enters the response, i00.dat.
4. The prompt

Enter the output file name :

is produced by the program p00 when fewer than three strings appear on the command line.

5. The response, o00.dat, is entered by the user.

1 You can omit ./ prefix by adding the following line to your file .bash_pr ofile, PATH=$PATH:./

Data Structures Lecture 2
CS 3613 Command Line Arguments

 2

Command line arguments are stored as an array of strings. For example, given the command
$ p00 i00.dat o00.dat

and the C++ program in Figure 1.

Figure 1. C++ program declarations for command line arguments

Figure 2. Command line arguments

Integer parameter argc stores the number of arguments, the argument count. Array argv contains pointers
to the separate strings on the command line.

Processing command line arguments proceeds by determining the number of arguments. If fewer than the
requis ite number of arguments are supplied, then the missing arguments must be obtained from the user.
Once all the arguments are obtained, corresponding files may be opened.

The solution to the problem posed in this lecture is shown in Figure 3.

Figure 3. Code for processing command line arguments.

void main(int argc, char* argv[])
{ return 0;
}

i 0 0 . d a t

o 0 0 . d a t

p 0 00

1

2

argv

//--
//File L002.cpp illustrates how command line arguments are processed
//--
//Author: Thomas R. Turner
//E-Mail: trturner@ucok.edu
//Date: January, 2003
//--
//Copyright January, 2003 by Thomas R. Turner.
//Do not reproduce without permission from Thomas R. Turner
//--
//Standard C and C++ include files.
//--
#include <iostream>
#include <fstream>
#include <string>
//--
//Standard Namespace
//--
using namespace std;

Data Structures Lecture 2
CS 3613 Command Line Arguments

 3

Figure 3. Code for processing command line arguments, continued

//--
//FileException is thrown when a file whose name is given on the
//command line cannot be opened.
//--
struct FileException {

FileException(char* fn)
{ cout << endl;

cout << "File " << fn << " could not be opened.";
}

};
//--
//CommandLineException is thrown when too many arguments appear on
//the command line
//--
struct CommandLineException {

CommandLineException(int max,int actual)
{ cout << endl;

cout << "Too many command line arguments.";
cout << endl;
cout << "A maximum of " <<max<< " arguments can appear on the line.";
cout << endl;
cout << actual << " arguments were entered.";

}
};
//--
//Function Manager models a stub for an application manager.
//--
void Manager (ifstream& i,ofstream& o)
{

//read the input file stream i
//process data from the input file stream
//write to the output file stream o

}

Data Structures Lecture 2
CS 3613 Command Line Arguments

 4

Figure 3. Code for processing command line arguments, continued

//--
//Function main processes command line arguments
//--
int main (int argc, char* argv[])
{ try {

char ifn[255]; //Input File Name
char ofn[255]; //Output File Name

switch (argc) {

case 1: //Prompt for both file names
cout << "Enter the input file name. ";
cin >> ifn;
cout << "Enter the output file name. ";
cin >> ofn;

break;
case 2: //Read the input file name and prompt for the output file name

strcpy(ifn,argv[1]);
cout << "Enter the output file name. ";
cin >> ofn;

break;
case 3: //Read both file names

strcpy(ifn,argv[1]);
strcpy(ofn,argv[2]);

break;
default: //Error, too many command line arguments

throw CommandLineException(2,argc-1);
}
ifstream i(i fn); if (!i) throw FileException(ifn);
ofstream o(ofn); if (!o) throw FileException(ofn);
Manager(i,o);
i.close();
o.close();

} catch (...) {
cout << endl;
cout << "Program terminated.";
cout << endl;
cout << “I won’t be back!”;
cout << endl;
exit(EXIT_FAILURE);

 }
 return 0;

}

