Data Structures Lecture?2

CS 3613

Command Line Arguments

Problem: We want to parameterize our programming projects so that files containing input data and files
providing results are named on the command line. If such files are not provided on the command line, we
want our program to prompt for such files.

Programming project p00, for example, accepts a single input file and produces a single output file. Under
ordinary circumstances the command line would look like:

$ p00i00.dat 000.dat*

1

2.

3.

File pQ0 is the first string that appears on the command line and contains the executable form of
project 1.

Filei00.dat isthe second string that appears on the command line and contains input data. Filei00.dat
isthe first command line parameter.

File 000.dat is the third string that appears on the command line and contains results produced by
project p00. File 000.dat isthe second command line parameter.

Another acceptable way to execute project pO0is:

$ p00i00.dat
Enter the output file name: 000.dat

1
2.
3.

4.

File pOO isthefirst string that appears on the command line contains the executable form of project 1.
Filei00.dat isthe second string that appears on command line and contains input data
The prompt

Enter the output file name:

is produced by the program p00 when fewer than three strings appear on the command line.
The response, 000.dat, is entered by the user.

Thethird and last way program p0O0 can be invoked is:

$ p00
Enter the input file name: i00.dat
Enter the output file name: 000.dat

1

2,

File pO0isthe first and only string that appears on the command line contains the executable form of
project 1.

The prompt

Enter theinput file name:

isproduced by program p00 when only one string appears on the command line.

The user entersthe response, i00.dat.

The prompt

Enter the output file name:

is produced by the program p00 when fewer than three strings appear on the command line.
The response, 000.dat, is entered by the user.

1Y ou can omit / prefix by adding the following line to your file .bash_pr ofile, PATH=$PATH:./

Data Structures Lecture?2
CS3613 Command Line Arguments

Command line arguments are stored as an array of strings. For example, given the command
$ p00i00.dat 000.dat

and the C++ program in Figure 1.

voidmain(int argc, char* argv[])
{ returng;
}

Figure 1. C++ program declarations for command line arguments

argv
0 > p|0|O0

1 » i |00 d|la|t
2 » o (0|0 .|d|a|t

Figure 2. Command line arguments

Integer parameter argc stores the number of arguments, the argument count. Array argv contains pointers
to the separate strings on the command line.

Processing command line arguments proceeds by determining the number of arguments. If fewer than the
requisite number of arguments are supplied, then the missing arguments must be obtained from the user.
Once all the arguments are obtained, corresponding files may be opened.

The solution to the problem posed in thislectureis shown in Figure 3.

/I
/IFile LO02.cpp illustrates how command line arguments ar e processed
e e e e

/IAuthor: Thomas R. Turner

/IE-Mail: trturner @ucok.edu

//[Date: January, 2003

I
/ICopyright January, 2003 by ThomasR. Turner.

/IDo not reproduce without permission from Thomas R. Turner
/I
/IStandard C and C++ include files.
/I
#include <iostream>
#include <fstream>
#include<string>

1l
/IStandard Namespace
I
using namespace std;

Figure 3. Codefor processing command line arguments.

Data Structures Lecture?2
CS3613 Command Line Arguments

I
/[FileException is thrown when a file whose name is given on the
/lcommand line cannot be opened.
Il
struct FileException {

FileException(char* fn)

{ cout<<endl;

cout <<"File" << fn << " could not be opened.";

}

|8

1l ---
//ICommandLineException isthrown when too many arguments appear on
/lthe command line
Il
struct CommandLineException {

CommandLineException(int max,int actual)

{ cout<<endl;

cout <<" Too many command line arguments." ;

cout << endl;
cout <<" A maximum of " <<max<<" arguments can appear on theline.";
cout << endl;
cout << actual <<" argumentswereentered." ;
}

I

1l

/IFunction Manager models a stub for an application manager.

Il

void Manager (ifstream& i,ofstream& o)

/lIread theinput filestream i
/Iprocess data from theinput file stream
/lwriteto the output file stream o

Figure 3. Code for processing command line arguments, continued

Data Structures Lecture?2

CS3613 Command Line Arguments
I
/[Function main processes command line arguments
Il
int main (int argc, char* argv[])
{ try{
char ifn[255]; /I nput File Name
char ofn[255]; /[Output File Name
switch (argc) {
case 1: /IPrompt for both file names
cout << " Enter theinput filename. " ;
cin>>ifn;
cout << " Enter the output file name. ";
cin>>ofn;
break;
case 2 /IRead theinput file name and prompt for the output file name
strepy(ifn,argv[1]);
cout << " Enter the output file name. ";
cin >> ofn;
break;
case 3: //Read both file names
strepy(ifn,argv[1));
strepy(ofn,argvi2]);
break;
default: /[Error, too many command line arguments

thr ow CommandLineException(2,argc-1);

ifstreami(ifn); if (i) throw FileException(ifn);
ofstreamo(ofn); if (!0) thr ow FileException(ofn);
Manager (i,0);
i.close();
o.close();
}catch (...){
cout << endl;
cout <<" Program terminated.” ;
cout << endl;
cout << “| won’t be back!”;
cout << endl;
exit(EXIT_FAILURE);
}

returnO;

Figure 3. Code for processing command line arguments, continued

