Computer Organization |

4.12 Extending Our Instruction Set

CMSC 2833 Lecture 96

Instruction | RTN Explanation

JnS X Store the PC at address X and jump to X+1

MBR « PC
MAR < X
M[MAR] < MBR
MBR « X
AC«1
AC <« AC + MBR
PC <« AC
Clear Clear the accumulator. Assign zero to the accumulator.
AC<0 Assign zero to the accumulator.

Addl X Add Indirect. Find the address of the operand in X. First,
fetch the address stored at X. Call this address Y. Then,
fetch the value at Y. Call this value Z. Add Z to the
accumulator.

MAR « X

MBR « M[MAR]
MAR <« MBR
MBR « M[MAR]
AC <« AC + MBR

Jumpl X Jump Indirect. Find the address of the operand in X. First,
fetch the instruction address stored at X. Call this address
Y. Transfer control to the instruction at Y. AssignY to the
PC.

MAR « X
MBR « M[MAR]
PC « MBR

Loadl X Load Indirect. Find the address of the operand in X. First,
fetch the address stored at X. Call this address Y. Next,
fetch the value stored at Y. Assign Y to the accumulator.

MAR « X

MBR « M[MAR]
MAR <« MBR
MBR « M[MAR]
AC « MBR




Computer Organization |

4.12 Extending Our Instruction Set

CMSC 2833 Lecture 96
Instruction RTN Explanation
Storel X Store Indirect. Find the address of the
destination address at location X. First,
fetch the address stored at X. Call this
address Y. Assign the value in the
accumulator to the memory location at
address Y.
MAR < X
MBR < M[MAR]
MAR < MBR
MBR « AC
M[MAR] < MBR
Opcode Instruction RTN
0000 InS X MBR « PC
MAR « X
M[MAR] « MBR
MBR « X
AC«1
AC < AC + MBR
PC < AC
0001 Load X MAR « X
MBR < M[MAR]
AC < MBR
0010 Store X MAR < X, MBR <« AC
M[MAR] « MBR
0011 Add X MAR « X
MBR « M[MAR]
AC « AC + MBR
0100 Subt X MAR « X
MBR < M[MAR]
AC < AC-MBR
0101 Input AC < InREG
0110 Output OutREG « AC
0111 Halt
1000 Skipcond If IR[11-10]=00 then
If AC<0 then PC«PC+1
else If IR[11-10]=01 then
If AC=0 then PC«PC+1
else If IR[11-10]=10 then
If AC>0 then PC—PC+1
1001 Jump X PC<IR[11-0]
1010 Clear AC«0

Table 4.7 MARIE’s Full Instruction Set



Computer Organization |

CMSC 2833

4.12 Extending Our Instruction Set
Lecture 96

Opcode

Instruction

RTN

1011

Addl X

MAR « X

MBR « M[MAR]
MAR < MBR
MBR « M[MAR]
AC « AC + MBR

1100

Jumpl X

MAR « X
MBR < M[MAR]
PC < MBR

1101

Loadl X

MAR « X

MBR « M[MAR]
MAR < MBR
MBR « M[MAR]
AC « MBR

1110

Storel X

MAR « X

MBR « M[MAR]
MAR < MBR
MBR « AC
M[MAR] < MBR

Table 4.7 MARIE’s Full Instruction Set (Continued)



Computer Organization |

4.12 Extending Our Instruction Set

CMSC 2833 Lecture 96

if X=Y then

X:=X*2
else

Y:=Y-X;

Example 4.3 if-then-else construction
High Level Language Representation

Hex Symbol Instruction Comment
Address
ORG 100
100 If, Load X Load the first value, X (12)
101 Subt Y Subtract the value of Y from X AC=12-20=-8
102 Skipcond | 400 If the AC=0, skip the next instruction
103 Jump Else Jump to the Else-part if AC<>0
104 Then, Load X Reload X so it can be doubled
105 Add X Double X
106 Store X Store the new value
107 Jump Endif Skip over the Else-part
108 Else, Load Y Else-part, Load Y
109 Subt X Subtract X from Y 20-12=8
10A Store Y Store Y-XinY
10B Endif, Halt Stop
10C X, Dec 12
10D Y, Dec 20

Example 4.3 if-then-else construction
MARIE Instruction Representation



Computer Organization |

4.12 Extending Our Instruction Set

CMSC 2833 Lecture 96
char* s="Hello world”;
while (s) {
cout << *s;
S++;
}
Example 4.4 Print a string using indirect addressing
High Level Language Representation
Hex Symbol Instruction Comment
Address
ORG 100
100 Getch, Loadl ChPtr
101 Skipcond | 400
102 Jump Outp
103 Halt
104 Outp, Output
105 Load ChPtr
106 Add One
107 Store ChPtr
108 Jump Getch
109 One, Hex 0001
10A ChPtr, Hex 108
108 String, Dec 072 /H
10C Dec 101 /e
10D Dec 108 /I
10E Dec 108 /I
10F Dec 111 /o
110 Dec 032 /[space]
111 Dec 119 /W
112 Dec 111 /o
113 Dec 114 /r
114 Dec 108 /I
115 Dec 100 /d
116 Dec 033 /!
117 Dec 000 /[null]

Example 4.4 Print a string using indirect addressing
MARIE Instruction Representation



Computer Organization | 4.12 Extending Our Instruction Set
CMSC 2833 Lecture 96

int X=20;
int Y=48;
double(X);
double (Y);
void double(int* Temp) {Temp=Temp+Temp;}
Example 4.5 function call
High Level Language Representation

Hex Symbol Instruction Comment

Address

ORG 100

100 Load X Load the first value to be doubled

101 Store Temp Copy the value to parameter Temp

102 InS Subr Call the function. Store the return address at
Subr

103 Store X The doubled value is in the accumulator.
Store the doubled value back to X

104 Load Y Load the second value to be doubled

105 Store Temp Copy the value to parameter Temp

106 InS Subr Call the function. Store the return address at
Subr

107 Store Y The doubled value is in the accumulator.
Store the doubled value back to Y

108 Halt Stop

109 X, Dec 20

10A Y, Dec 48

10B Subr, Hex 0 Store the return address here.

10C Load Temp

10D Add Temp

10E Jumpl Subr Return through the return address stored at
Subr

10F Temp, Dec 0 Parameter for Subr

Example 4.5 function call
MARIE Instruction Representation



