Computer Organization | 4.9 Instruction Processing
CMSC 2833 Lecture 93

4.9.1 The Fetch-Decode-Execute Cycle

=

Copy the PC to
the MAR

A 4

Copy the contents of
memory at address
MAR to IR;
Increment PC by 1

Decode the Instruction and
place bits IR(11-0) in
MAR

i

Instruction
requires
operand?

Copy the contents of
memory at address
MAR to MBR

Yes

Execute the
instruction

A

Figure 4.11 The Fetch-Decode-Execute Cycle



Computer Organization |

4.9 Instruction Processing

CMSC 2833 Lecture 93
Load X
Step RTN Explanation
Fetch MAR « PC Store the address of the next instruction
in memory address register
IR < M[MAR] Read the next instruction from memory
and store it in the instruction register.
PC « PC+1 Increment the program counter to the
address of the next instruction.
Decode MAR « IR[11-0] Place the value of the address field in the

instruction in the memory address
register.

(Decode IR[15-12])

At the same time decode

Get operand

MBR < M[MAR]

Store the contents of memory at the
address in the memory address register to
the memory buffer register.

Execute

AC < MBR

Store the value in the memory buffer
register to the accumulator.




Computer Organization | 4.9 Instruction Processing
CMSC 2833 Lecture 93

4.9.2 Interrupts and the Instruction Cycle

Has an
interrupt been
issued?

Yes No

y

Perform fetch-
decode-execute
cycle

Process the
interrupt

Y
A

Figure 4.12 Fetch-Decode-Execute Cycle with Interrupt Checking



Computer Organization |

CMSC 2833

4.9 Instruction Processing

Interrupt
Signal
Detected

v

Save
variables and
registers

v

Look up ISR address
in interrupt vector
table

v

Place ISR
address
in PC

!

Branch to ISR

Perform work
specific to
interrupt

Restore
saved variables
and registers

v

~
Branch to top of
fetch-decode-execute
cycle

. J

Figure 4.13 Processing and Interrupt

Lecture 93

Term

Explanation

Interrupt

A signal or mechanism that momentarily disrupts or
alters the normal fetch-decode-execute cycle.




Computer Organization |
CMSC 2833

49.3

4.9 Instruction Processing
Lecture 93

Examples include division by zero, stack overflow, or
memory access violation.

Hardware interrupt

Hardware interrupts are efficiently used to notify the
CPU that a peripheral device requires service.

Software interrupt

Called traps or exceptions. Used by various software
applications. An example is a debugger.

Interrupt handler

An interrupt handler is a function that services either a
software or a hardware interrupt.

Interrupt service routines

An interrupt service routine (ISR) is equivalent to an
interrupt handler.

Interrupt vector table

An interrupt vector table contains an indexed list of
addresses of interrupt handlers.

Address vector

An address vector is the starting address of an interrupt
handler.

Interrupt masking

Interrupt masking is the process of suspending lower
priority interrupts. For example, most systems mask
keyboard interrupts when processing a page fault.

Maskable interrupt

Interrupts that can be suspended via masking are called
“maskable.”

Nonmaskable interrupt

A nonmaskable interrupt is one where the system
would enter an unstable or unpredictable state if the
interrupt were serviced.

MARIE’s I/O
Instruction Action
Input The CPU waits for a character to be placed in the InREG.
Output The CPU places a character in the OutREG.




