
Computer Organization I 4.9 Instruction Processing
CMSC 2833 Lecture 93

 1

4.9.1 The Fetch-Decode-Execute Cycle

Instruction
requires

operand?

Start

Copy the PC to
the MAR

Copy the contents of
memory at address

MAR to IR;
Increment PC by 1

Decode the Instruction and
place bits IR(11-0) in

MAR

Copy the contents of
memory at address

MAR to MBR

Execute the
instruction

Yes

No

Figure 4.11 The Fetch-Decode-Execute Cycle

Computer Organization I 4.9 Instruction Processing
CMSC 2833 Lecture 93

 2

Load X
Step RTN Explanation
Fetch MAR ← PC Store the address of the next instruction

in memory address register
 IR ← M[MAR] Read the next instruction from memory

and store it in the instruction register.
 PC ← PC+1 Increment the program counter to the

address of the next instruction.
Decode MAR ← IR[11-0] Place the value of the address field in the

instruction in the memory address
register.

 (Decode IR[15-12]) At the same time decode
Get operand MBR ← M[MAR] Store the contents of memory at the

address in the memory address register to
the memory buffer register.

Execute AC ← MBR Store the value in the memory buffer
register to the accumulator.

Computer Organization I 4.9 Instruction Processing
CMSC 2833 Lecture 93

 3

4.9.2 Interrupts and the Instruction Cycle

Yes NoHas an
interrupt been

issued?

Process the
interrupt

Perform fetch-
decode-execute

cycle

Figure 4.12 Fetch-Decode-Execute Cycle with Interrupt Checking

Computer Organization I 4.9 Instruction Processing
CMSC 2833 Lecture 93

 4

Look up ISR address
in interrupt vector

table

Start

Interrupt
Signal

Detected

Save
variables and

registers

Place ISR
address

in PC

Branch to ISR Start

Perform work
specific to
interrupt

Return
Restore

saved variables
and registers

Branch to top of
fetch-decode-execute

cycle

Figure 4.13 Processing and Interrupt

Term Explanation
Interrupt A signal or mechanism that momentarily disrupts or

alters the normal fetch-decode-execute cycle.

Computer Organization I 4.9 Instruction Processing
CMSC 2833 Lecture 93

 5

Examples include division by zero, stack overflow, or
memory access violation.

Hardware interrupt Hardware interrupts are efficiently used to notify the
CPU that a peripheral device requires service.

Software interrupt Called traps or exceptions. Used by various software
applications. An example is a debugger.

Interrupt handler An interrupt handler is a function that services either a
software or a hardware interrupt.

Interrupt service routines An interrupt service routine (ISR) is equivalent to an
interrupt handler.

Interrupt vector table An interrupt vector table contains an indexed list of
addresses of interrupt handlers.

Address vector An address vector is the starting address of an interrupt
handler.

Interrupt masking Interrupt masking is the process of suspending lower
priority interrupts. For example, most systems mask
keyboard interrupts when processing a page fault.

Maskable interrupt Interrupts that can be suspended via masking are called
“maskable.”

Nonmaskable interrupt A nonmaskable interrupt is one where the system
would enter an unstable or unpredictable state if the
interrupt were serviced.

4.9.3 MARIE’s I/O

Instruction Action
Input The CPU waits for a character to be placed in the InREG.
Output The CPU places a character in the OutREG.

