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4.9.1 The Fetch-Decode-Execute Cycle
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Figure 4.11 The Fetch-Decode-Execute Cycle
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Load X
Step RTN Explanation
Fetch MAR « PC Store the address of the next instruction
in memory address register
IR < M[MAR] Read the next instruction from memory
and store it in the instruction register.
PC « PC+1 Increment the program counter to the
address of the next instruction.
Decode MAR « IR[11-0] Place the value of the address field in the

instruction in the memory address
register.

(Decode IR[15-12])

At the same time decode

Get operand

MBR < M[MAR]

Store the contents of memory at the
address in the memory address register to
the memory buffer register.

Execute

AC < MBR

Store the value in the memory buffer
register to the accumulator.
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4.9.2 Interrupts and the Instruction Cycle
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Figure 4.12 Fetch-Decode-Execute Cycle with Interrupt Checking
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Figure 4.13 Processing and Interrupt

Lecture 93

Term

Explanation

Interrupt

A signal or mechanism that momentarily disrupts or
alters the normal fetch-decode-execute cycle.
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Examples include division by zero, stack overflow, or
memory access violation.

Hardware interrupt

Hardware interrupts are efficiently used to notify the
CPU that a peripheral device requires service.

Software interrupt

Called traps or exceptions. Used by various software
applications. An example is a debugger.

Interrupt handler

An interrupt handler is a function that services either a
software or a hardware interrupt.

Interrupt service routines

An interrupt service routine (ISR) is equivalent to an
interrupt handler.

Interrupt vector table

An interrupt vector table contains an indexed list of
addresses of interrupt handlers.

Address vector

An address vector is the starting address of an interrupt
handler.

Interrupt masking

Interrupt masking is the process of suspending lower
priority interrupts. For example, most systems mask
keyboard interrupts when processing a page fault.

Maskable interrupt

Interrupts that can be suspended via masking are called
“maskable.”

Nonmaskable interrupt

A nonmaskable interrupt is one where the system
would enter an unstable or unpredictable state if the
interrupt were serviced.

MARIE’s I/O
Instruction Action
Input The CPU waits for a character to be placed in the InREG.
Output The CPU places a character in the OutREG.




