
Computer Organization II 4.8 MARIE
CMSC 3833 Lecture 92

 1

Term Definition
MARIE Machine Architecture that is Really Intuitive and Easy

4.8.1 The Architecture

MBR MAR

InReg

OutReg

Control Unit

CPU

PCIR

AC

ALU

Main
Memory

Address 4095

Address 0

Figure 4.8 MARIE’s Architecture

Characteristics:

• 16-bit, binary, two’s complement
• Stored program, fixed word length
• Word (but not byte) addressable
• 4K (4096) words of main memory (this implies 12 bits per address)
• 16-bit data (words have 16 bits)
• 16-bit instructions: 4 bits for the opcode and 12 bits for the operand
• A 16-bit accumulator (AC)
• A 16-bit instruction register (IR)
• A 16-bit memory buffer register (MBR)
• A 12-bit memory address register (MAR)
• A 12-bit Program Counter (PC)
• An 8-bit input register
• An 8-bit output register

Computer Organization II 4.8 MARIE
CMSC 3833 Lecture 92

 2

4.8.2 Registers and Buses
Register Description
AC The accumulator holds data values. This is a general-purpose register

and it holds data that the CPU needs to process. Most computers today
have multiple general-purpose registers.

MAR The memory address register hold the memory address of the data being
referenced.

MBR The memory buffer register holds either the data just read from memory
or the data ready to be written to memory.

PC The program counter holds the address of the next instruction to be
executed in the program.

IR The instruction register holds the next instruction to be executed.
InREG The input register holds data from the input device.
OutREG The output register holds data for the output device.
status The status or flag register holds information indicating various conditions,

such as an overflow in the ALU, whether or not the result of an arithmetic
or logical operation is zero, if a carry bit should be used in a computation,
and when a result is negative.

Computer Organization II 4.8 MARIE
CMSC 3833 Lecture 92

 3

MBR

MAR

Main
Memory

InReg

OutReg

PC

IR

AC

ALU

0

1

2

3

4

5

6

7

Bus
Address

16-bit bus

Figure 4.9 Datapath in MARIE

To copy data from one place to another, you must specify the origin and destination. For
example, if you wish to copy data from the PC to the IR, then the origin is 2 (0102) and
the destination is 7 (1112).

Computer Organization II 4.8 MARIE
CMSC 3833 Lecture 92

 4

4.8.3 Instructions Set Architecture

Bit
15

Bit
12

Bit
11

Bit
0

Opcode Address

4 bits 12 bits

Figure 4.10 MARIE’s Instruction Format

Instruction
Number

Instruction Meaning Bin Hex
0000 0 JnS X Store the PC address X and jump to X+1
0001 1 Load X Load the contents of address X into the AC.
0010 2 Store X Store the contents of the AC at address X.
0011 3 Add X Add the contents of address X to the AC and store the

result in the AC.
0100 4 Subt X Subtract the contents of address X from the AC and store

the result in the AC.
0101 5 Input Input a value from the keyboard into the AC.
0110 6 Output Output the value in the AC to the display.
0111 7 Halt Terminate the program.
1000 8 Skipcond Skip the next instruction on condition.
1001 9 Jump X Load the value of X into the PC.
1010 A Clear Put all zeros in the AC
1011 B AddI Add indirect: Go to address X. Use the value at X as the

actual address of the data operand to add to the AC.
1100 C JumpI X Jump indirect: Go to address X. Use the value at X as the

actual address of the location to jump to.
1101 D LoadI X Load indirect: Go to address X. Use the value at X as the

actual address of the operand to load into the AC.
1110 E StoreI X Store indirect: Go to address X. Use the value at X as the

destination address for storing the value in the
accumulator.

1111 F
Table 4.2 MARIE’s Instruction Set (Complete)

Computer Organization II 4.8 MARIE
CMSC 3833 Lecture 92

 5

Conditional branching:
Bits 11 – 10 Meaning

00 “skip if the AC is negative”
01 ”skip if the AC is equal to 0”
10 “skip if the AC is greater than 0”

 opcode address (operand)
 skip if the AC is negative
 1 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 opcode address (operand)
 skip if the AC is equal to 0
 1 0 0 0 0 1
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 opcode address (operand)
 skip if the AC is greater than 0
 1 0 0 0 1 0
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4.8.4 Register Transfer Notation

Used to specify microoperations. A microoperation is an operation that can be performed
in one clock cycle.

Notation Meaning
← A transfer of information. For example, 𝑀𝑀𝑀𝑀𝑀𝑀 ← 𝑋𝑋, the memory address

register is assigned the value of 𝑋𝑋.
𝑀𝑀[𝑋𝑋] 𝑀𝑀 is memory and 𝑋𝑋 is an address in the memory. 𝑀𝑀[𝑋𝑋] is value in memory

and address 𝑋𝑋.

Instruction RTN Explanation
Load X MAR ← X Store the address portion of the

instruction – X – 12 bits – into the memory
address register.

 MBR ← M[MAR] Store the contents of memory at the
address in the memory address register to
the memory buffer register.

 AC ← MBR Store the value in the memory buffer
register to the accumulator.

Computer Organization II 4.8 MARIE
CMSC 3833 Lecture 92

 6

Instruction RTN Explanation
Store X MAR ← X, MBR ← AC Simultaneously, store the address portion

of the instruction – X – 12 bits – into the
memory address register and store the
value of the accumulator in the memory
buffer register.

 M[MAR] ← MBR Store the value in the memory buffer
register in memory at the address in the
memory address register.

Add X MAR ← X Store the address portion of the
instruction – X – 12 bits – into the memory
address register.

 MBR ← M[MAR] Store the value in the memory buffer
register in memory at the address in the
memory address register.

 AC ← AC + MBR Add the value in the accumulator and the
memory buffer register and store the sum
in the accumulator.

Subt X MAR ← X Store the address portion of the
instruction – X – 12 bits – into the memory
address register.

 MBR ← M[MAR] Store the value in the memory buffer
register in memory at the address in the
memory address register.

 AC ← AC-MBR Subtract the value in the memory buffer
register from the accumulator and store
the difference in the accumulator.

Input AC ← InREG Store the value in the input register to the
accumulator.

Output OutREG ← AC Store the value in the accumulator to the
output register.

Halt No operations are performed on registers;
the machine simply ceases execution of
the program.

Skipcond If IR[11-10]=00 then
 If AC<0 then PC←PC+1
else If IR[11-10]=01 then
 If AC=0 then PC←PC+1
else If IR[11-10]=10 then
 If AC>0 then PC←PC+1

If bits 10 and 11 of the IR are 00 then …

If bits 10 and 11 of the IR are 01 then …

If bits 10 and 11 of the IR are 10 then …

Jump X PC ← X (PC←IR[11-0]) Store the least significant 12 bits of the
instruction register into the program
counter.

Computer Organization II 4.8 MARIE
CMSC 3833 Lecture 92

 7

Instruction RTN Explanation
Clear Clear the accumulator. Assign zero to the

accumulator.
 AC ← 0 Assign zero to the accumulator.
AddI X Add Indirect. Find the address of the

operand in X. First, fetch the address
stored at X. Call this address Y. Then,
fetch the value at Y. Call this value Z. Add
Z to the accumulator.

 MAR ← X
 MBR ← M[MAR]
 MAR ← MBR
 MBR ← M[MAR]
 AC ← AC + MBR
JumpI X Jump Indirect. Find the address of the

operand in X. First, fetch the instruction
address stored at X. Call this address Y.
Transfer control to the instruction at Y.
Assign Y to the PC.

 MAR ← X
 MBR ← M[MAR]
 PC ← MBR
LoadI X Load Indirect. Find the address of the

operand in X. First, fetch the address
stored at X. Call this address Y. Next,
fetch the value stored at Y. Assign Y to the
accumulator.

 MAR ← X
 MBR ← M[MAR]
 MAR ← MBR
 MBR ← M[MAR]
 AC ← MBR
StoreI X Store Indirect. Find the address of the

destination address at location X. First,
fetch the address stored at X. Call this
address Y. Assign the value in the
accumulator to the memory location at
address Y.

 MAR ← X
 MBR ← M[MAR]
 MAR ← MBR
 MBR ← AC
 M[MAR[← AC

