

- Every computer contains at least one clock that synchronizes the activities of its components.
- A fixed number of clock cycles are required to carry out each data movement or computational operation.
- The clock frequency, measured in megahertz or gigahertz, determines the speed with which all operations are carried out.
- Clock cycle time is the reciprocal of clock frequency.
 - An 800 MHz clock has a cycle time of 1.25 ns.
 - Question: what is the clock speed of a clock having an 8 ns cycle time.
 - Answer: $f = 1/\text{cycle time} = 1/8 \times 10^{-9} = 125 \text{ MHz}$
- Clock speed should not be confused with CPU performance.
- The CPU time required to run a program is given by the general performance equation:
$$\text{CPU Time} = \frac{\text{seconds}}{\text{program}} = \frac{\text{instructions}}{\text{program}} \times \frac{\text{average cycles}}{\text{instruction}} \times \frac{\text{seconds}}{\text{cycle}}$$
 - We see that we can improve CPU throughput when we reduce the number of instructions in a program, reduce the number of cycles per instruction, or reduce the number of nanoseconds per clock cycle.