


1. Read the problem specification and reduce to a block diagram.



3-Bit Synchronous Counter Block Diagram

2. Find the block that is a sequential circuit and draw a symbolic state diagram.



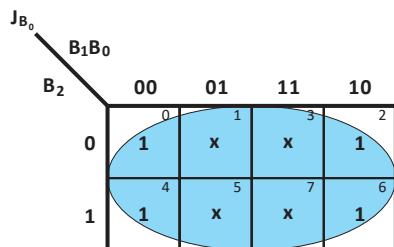
Simplified 3-Bit Synchronous Counter Symbolic State Diagram

3. Develop a symbolic PRESENT – NEXT STATE table.

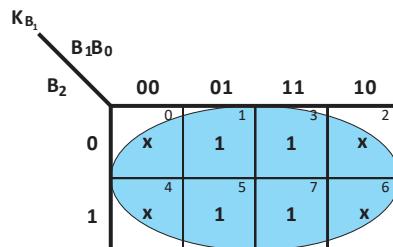
| PRESENT STATE | NEXT STATE |
|---------------|------------|
| 0             | 1          |
| 1             | 2          |
| 2             | 3          |
| 3             | 4          |
| 4             | 5          |
| 5             | 6          |
| 6             | 7          |
| 7             | 0          |

4. Determine the number of flip-flops, assign states, and revise the PRESENT – NEXT STATE table.

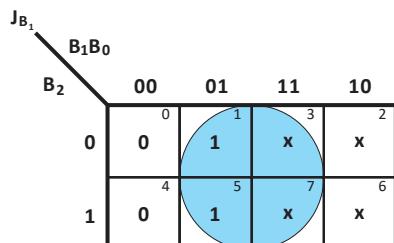
| PRESENT STATE |       |       |       | NEXT STATE |       |       |       |
|---------------|-------|-------|-------|------------|-------|-------|-------|
| Symbolic      | $B_2$ | $B_1$ | $B_0$ | Symbolic   | $B_2$ | $B_1$ | $B_0$ |
| 0             | 0     | 0     | 0     | 1          | 0     | 0     | 1     |
| 1             | 0     | 0     | 1     | 2          | 0     | 1     | 0     |
| 2             | 0     | 1     | 0     | 3          | 0     | 1     | 1     |
| 3             | 0     | 1     | 1     | 4          | 1     | 0     | 0     |
| 4             | 1     | 0     | 0     | 5          | 1     | 0     | 1     |
| 5             | 1     | 0     | 1     | 6          | 1     | 1     | 0     |
| 6             | 1     | 1     | 0     | 7          | 1     | 1     | 1     |
| 7             | 1     | 1     | 1     | 0          | 0     | 0     | 0     |


5. Develop a NEXT STATE DECODER for several kinds of flip-flops.

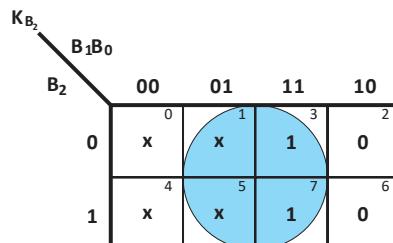
| PRESENT STATE |       |       |       | NEXT STATE |       |       |       | NEXT STATE DECODER |           |           |           |           |           |
|---------------|-------|-------|-------|------------|-------|-------|-------|--------------------|-----------|-----------|-----------|-----------|-----------|
| Symbolic      | $B_2$ | $B_1$ | $B_0$ | Symbolic   | $B_2$ | $B_1$ | $B_0$ | $J_{B_2}$          | $K_{B_2}$ | $J_{B_1}$ | $K_{B_1}$ | $J_{B_0}$ | $K_{B_0}$ |
| 0             | 0     | 0     | 0     | 1          | 0     | 0     | 1     | 0                  | x         | 0         | x         | 1         | x         |
| 1             | 0     | 0     | 1     | 2          | 0     | 1     | 0     | 0                  | x         | 1         | x         | x         | 1         |
| 2             | 0     | 1     | 0     | 3          | 0     | 1     | 1     | 0                  | x         | x         | 0         | 1         | x         |
| 3             | 0     | 1     | 1     | 4          | 1     | 0     | 0     | 1                  | x         | x         | 1         | x         | 1         |
| 4             | 1     | 0     | 0     | 5          | 1     | 0     | 1     | x                  | 0         | 0         | x         | 1         | x         |
| 5             | 1     | 0     | 1     | 6          | 1     | 1     | 0     | x                  | 0         | 1         | x         | x         | 1         |
| 6             | 1     | 1     | 0     | 7          | 1     | 1     | 1     | x                  | 0         | x         | 0         | 1         | x         |
| 7             | 1     | 1     | 1     | 0          | 0     | 0     | 0     | x                  | 1         | x         | 1         | x         | 1         |


| $Q(t)$ | $\rightarrow$ | $Q(t + 1)$ | $J$ | $K$ |
|--------|---------------|------------|-----|-----|
| 0      |               | 0          | 0   | x   |
| 0      |               | 1          | 1   | x   |
| 1      |               | 0          | x   | 1   |
| 1      |               | 1          | x   | 0   |

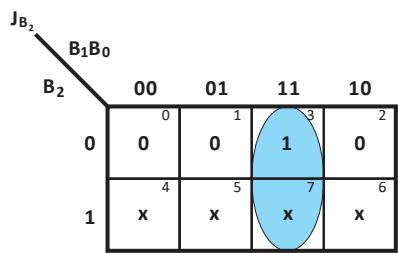
JK Excitation Table


6. Plot the NEXT STATE DECODERS and determine which kind of flip-flop minimizes the logic for the NEXT STATE DECODER.

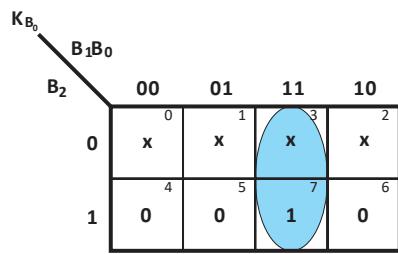



$$J_{B_0} = 1$$



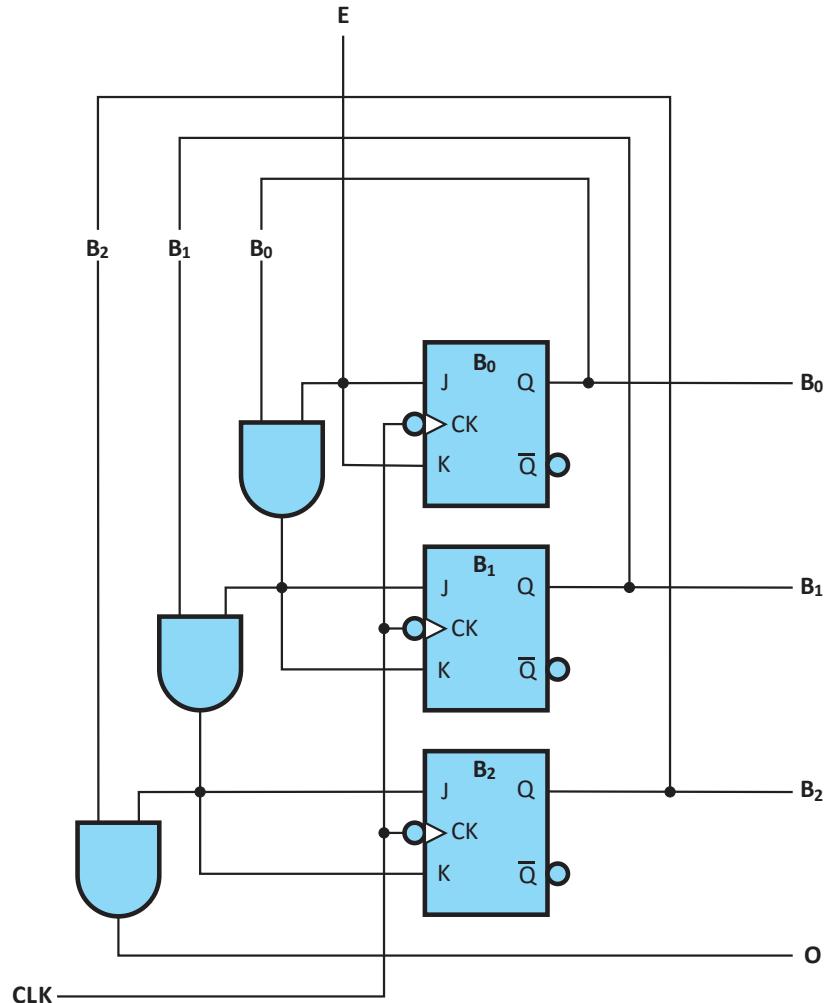

$$K_{B_0} = 1$$




$$J_{B_1} = B_0$$



$$K_{B_1} = B_0$$




$$J_{B_2} = B_1 B_0$$



$$K_{B_2} = B_1 B_0$$

7. Draw the logic diagram.



Logic Diagram for a 3-Bit Synchronous Counter