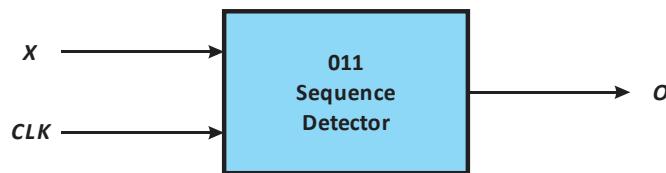


Synchronous Sequential Circuit Design


Steps:

1. Read the problem specification and reduce to a block diagram.
2. Find the block that is a sequential circuit and draw a symbolic state diagram.
3. Develop a symbolic PRESENT – NEXT STATE table.
4. Determine the number of flip-flops, assign states, and revise the PRESENT – NEXT STATE table.
5. Develop a NEXT STATE DECODER for several kinds of flip-flops.
6. Plot the NEXT STATE DECODERs and determine which kind of flip-flop minimizes the logic for the NEXT STATE DECODER.
7. Plot the output decoder logic.
8. Draw the logic diagram.

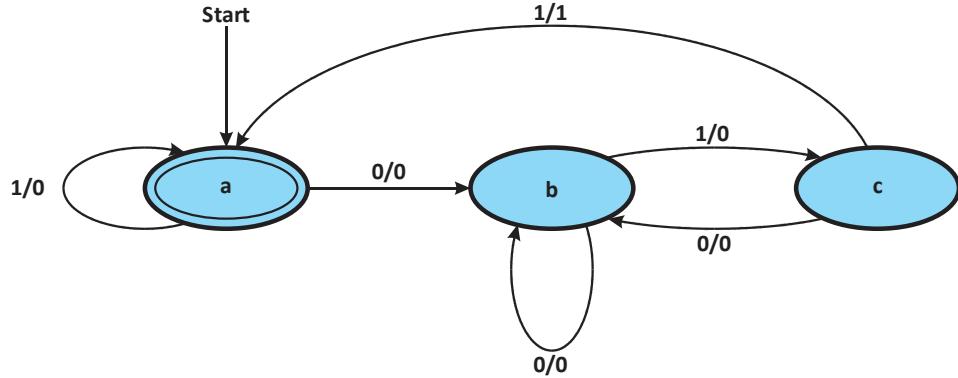
Example:

Problem Specification: Design a circuit that will produce an output one-pulse if it detects the binary sequence 011.

1. Read the problem specification and reduce to a block diagram.

Block Diagram

X: Input binary sequence

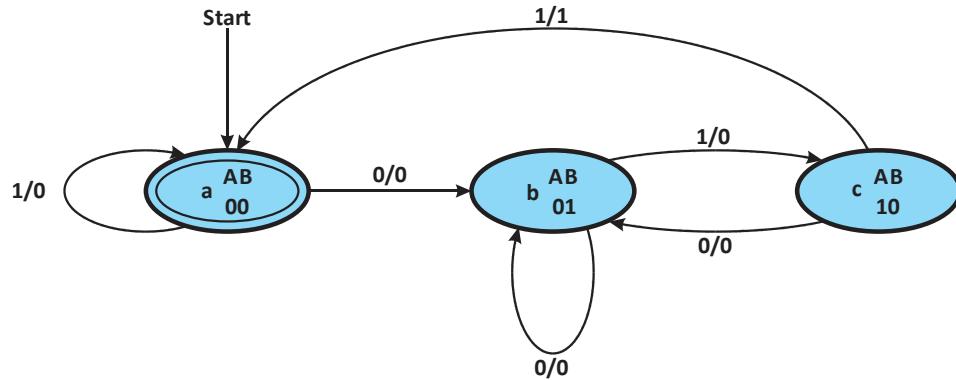

CLK: Clock

O: Output,

O = 1 if the binary sequence 011 has been detected

O = 0 if the binary sequence 011 has not been detected

2. Find the block that is a sequential circuit and draw a symbolic state diagram.


Symbolic State Diagram

3. Develop a symbolic PRESENT – NEXT STATE table.

Present State	Input X	Next State	Output O
a	0	b	0
	1	a	0
b	0	b	0
	1	c	0
c	0	b	0
	1	a	1

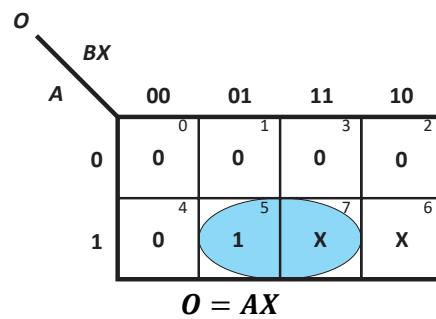
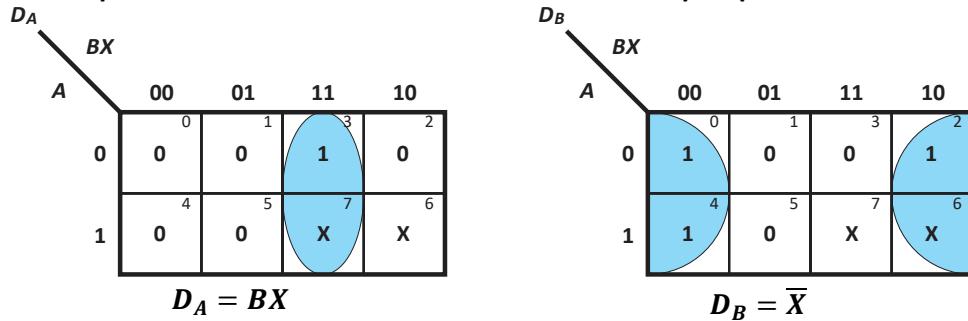
Symbolic Present-State-Next-State Table

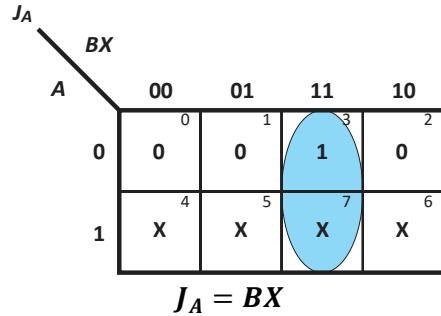
4. Determine the number of flip-flops, assign states, and revise the PRESENT – NEXT STATE table.

State Diagram

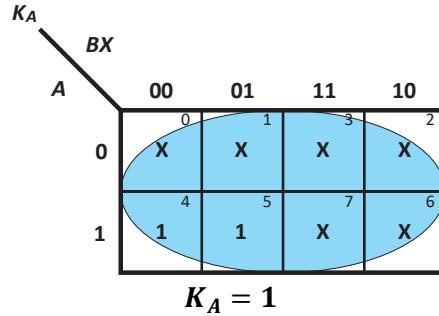
Present State			Input	Next State			Output
Symbolic	A	B	X	Symbolic	A	B	O
a	0	0	0	b	0	1	0
	0	0	1	a	0	0	0
b	0	1	0	b	0	1	0
	0	1	1	c	1	0	0
c	1	0	0	b	0	1	0
	1	0	1	a	0	0	1
	1	1	0	X	X	X	X
	1	1	1	X	X	X	X

Present-State-Next-State Table

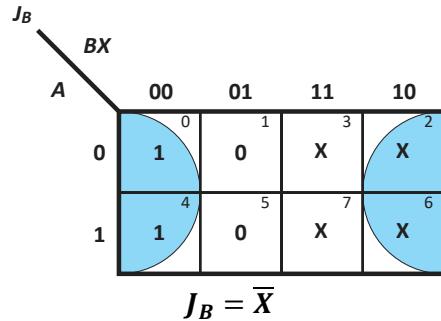


5. Plot the NEXT STATE DECODERS and determine which kind of flip-flop minimizes the logic for the NEXT STATE DECODER.

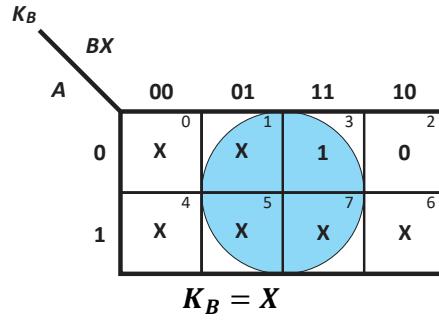

Present State			Input	Next State			Output	Next State Decoder						
Sym	A	B	X	Sym	A	B	O	J_A	K_A	J_B	K_B	D_A	D_B	
a	0	0	0	b	0	1	0	0	X	1	X	0	1	
	0	0	1	a	0	0	0	0	X	0	X	0	0	
b	0	1	0	b	0	1	0	0	X	X	0	0	1	
	0	1	1	c	1	0	0	1	X	X	1	1	0	
c	1	0	0	b	0	1	0	X	1	1	X	0	1	
	1	0	1	a	0	0	1	X	1	0	X	0	0	
	1	1	0	X	X	X	X	X	X	X	X	X	X	
	1	1	1	X	X	X	X	X	X	X	X	X	X	

$Q(t)$	\rightarrow	$Q(t + 1)$	J	K
0		0	0	X
0		1	1	X
1		0	X	1
1		1	X	0

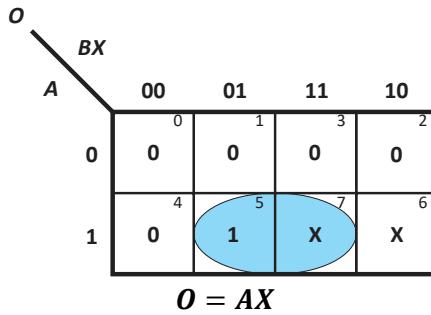

JK Flip-Flop Excitation Table

6. Develop a NEXT STATE DECODER for several kinds of flip-flops.

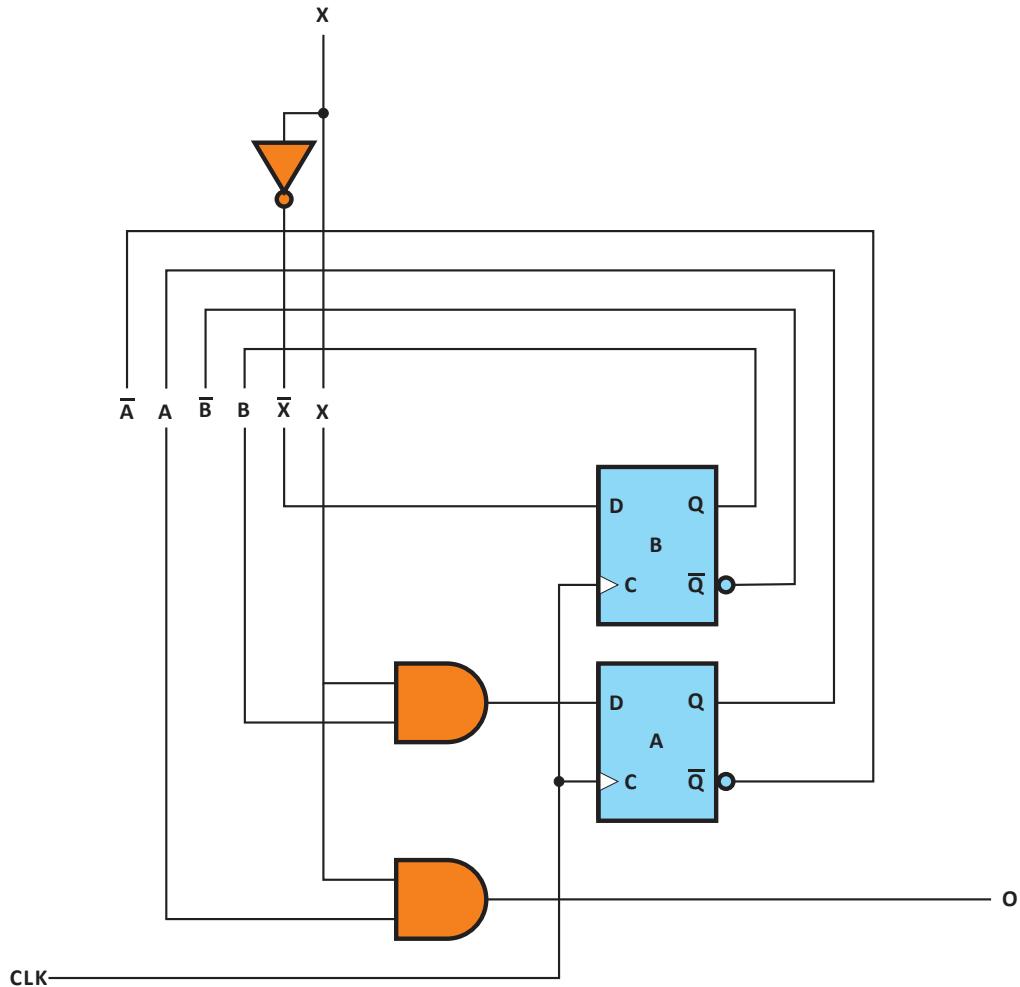



$$J_A = BX$$

$$K_A = 1$$

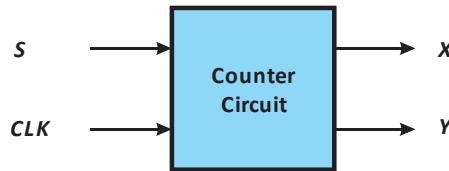


$$J_B = \bar{X}$$


$$K_B = X$$

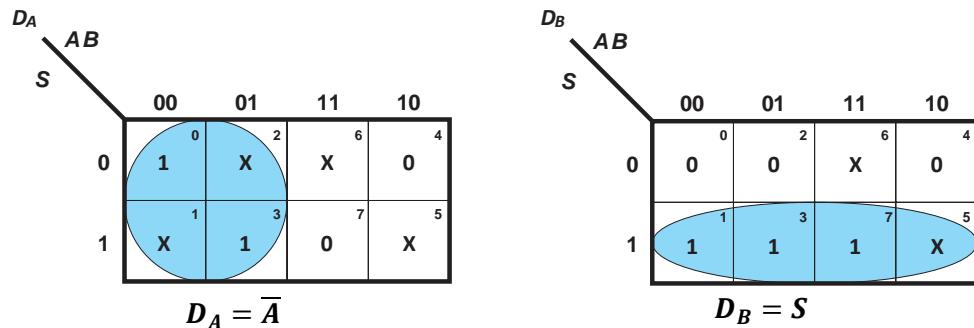
7. Plot the output decoder logic.

$$O = AX$$

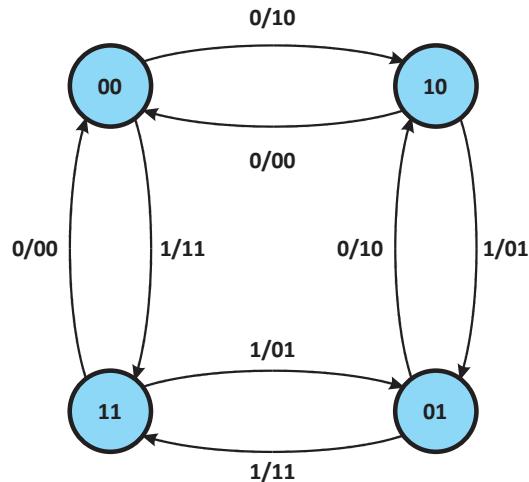

8. Draw the logic diagram.

Logic Diagram

Problem Specification: Design a counter that when switch S is off (0), counts 0, 2, 0, 2, ..., and when the switch is on (1), counts 1, 3, 1, 3, When the counter is in state 0 and the switch is on (1), the counter switches to an odd state. When the counter is in state 1 and the switch is off (0), counter switches to an even state. Define two outputs X and Y such that they display the values of the counter in binary. For example, when the counter is in state 1, $XY = 01$, that is, $X = 0$ and $Y = 1$.


1. Read the problem specification and reduce to a block diagram.

Block Diagram


1.1. Analyze the problem

Present State		Input	Next State				
#	A	B	S	#	A	B	
0	0	0	0	2	1	0	$S = 0, 0 \rightarrow 2$
0	0	0	1		X	1	$S = 1, 0 \rightarrow \text{odd}$
1	0	1	0		X	0	$S = 0, 1 \rightarrow \text{even}$
1	0	1	1	3	1	1	$S = 1, 1 \rightarrow 3$
2	1	0	0	0	0	0	$S = 0, 2 \rightarrow 0$
2	1	0	1		X	1	
3	1	1	0		X	0	
3	1	1	1	1	0	1	$S = 1, 3 \rightarrow 1$

Present State			Input	Next State			Output	
#	A	B	S	#	A	B	X	Y
0	0	0	0	2	1	0		
0	0	0	1	3	1	1		
1	0	1	0	2	1	0		
1	0	1	1	3	1	1		
2	1	0	0	0	0	0	0	
2	1	0	1	1	0	1		
3	1	1	0	0	0	0	0	
3	1	1	1	1	0	1		

2. Find the block that is a sequential circuit and draw a symbolic state diagram.

Symbolic State Diagram

Well, it is not too symbolic

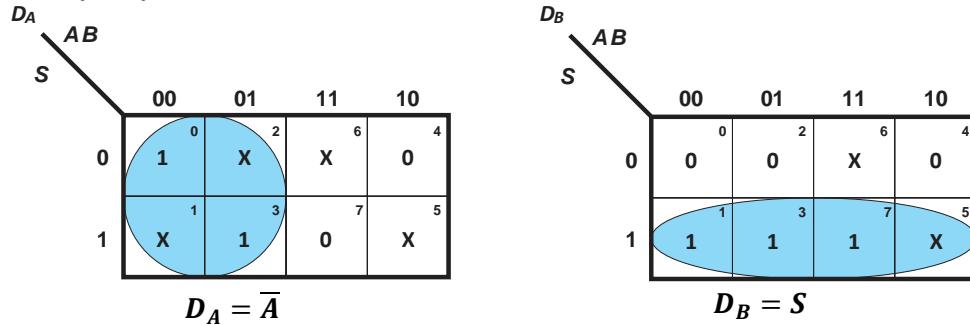
3. Develop a symbolic PRESENT – NEXT STATE table.

Present State			Input	Next State			Output	
#	A	B	S	#	A	B	X	Y
0	0	0	0	2	1	0	1	0
0	0	0	1	3	1	1	1	1
1	0	1	0	2	1	0	1	0
1	0	1	1	3	1	1	1	1
2	1	0	0	0	0	0	0	0
2	1	0	1	1	0	1	0	1
3	1	1	0	0	0	0	0	0
3	1	1	1	1	0	1	0	1

4. Determine the number of flip-flops, assign states, and revise the PRESENT – NEXT STATE table.

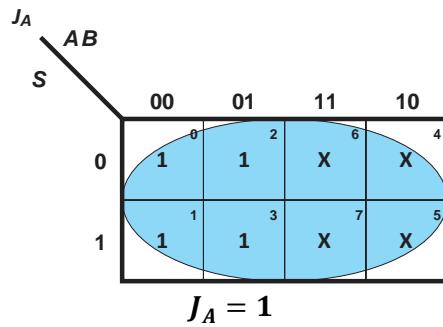
- Yes, we already did that task.

5. Plot the NEXT STATE DECODERS and determine which kind of flip-flop minimizes the logic for the NEXT STATE DECODER.

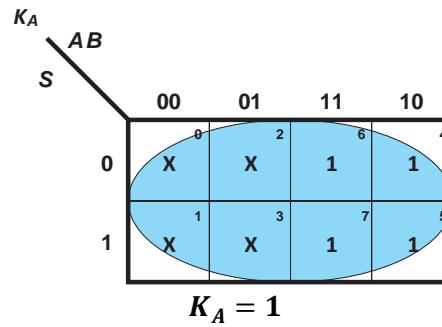

Present State		Input	Next State		Next State Decoder					
A	B		A	B	D_A	D_B	J_A	K_A	J_B	K_B
0	0	0	1	0	1	0	1	X	0	X
0	0	1	1	1	1	1	1	X	1	X
0	1	0	1	0	1	0	1	X	X	1
0	1	1	1	1	1	1	1	X	X	0
1	0	0	0	0	0	0	X	1	0	X
1	0	1	0	1	0	1	X	1	1	X
1	1	0	0	0	0	0	X	1	X	1
1	1	1	0	1	0	1	X	1	X	0

$Q(t)$	\rightarrow	$Q(t + 1)$	J	K
0		0	0	X
0		1	1	X
1		0	X	1
1		1	X	0

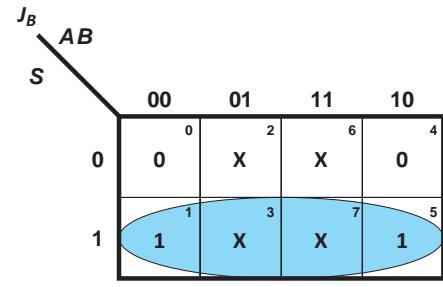
JK Flip-Flop Excitation Table

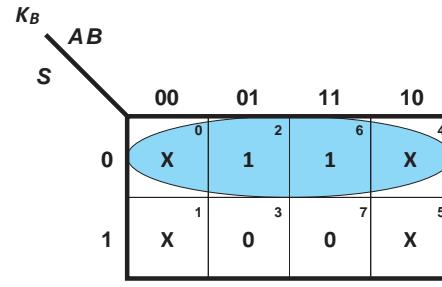

6. Develop a NEXT STATE DECODER for several kinds of flip-flops.

6.1. D Flip-Flops

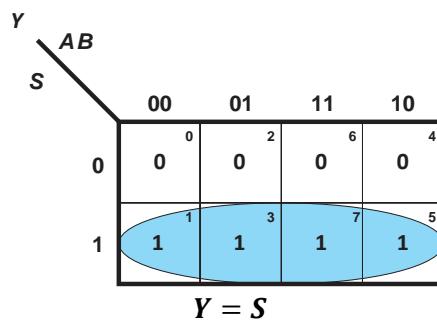
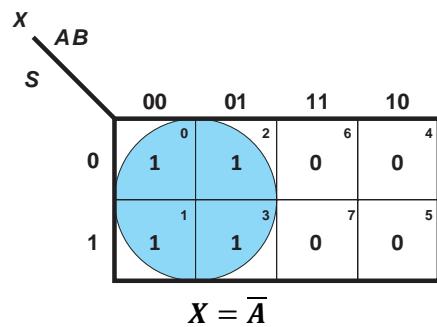


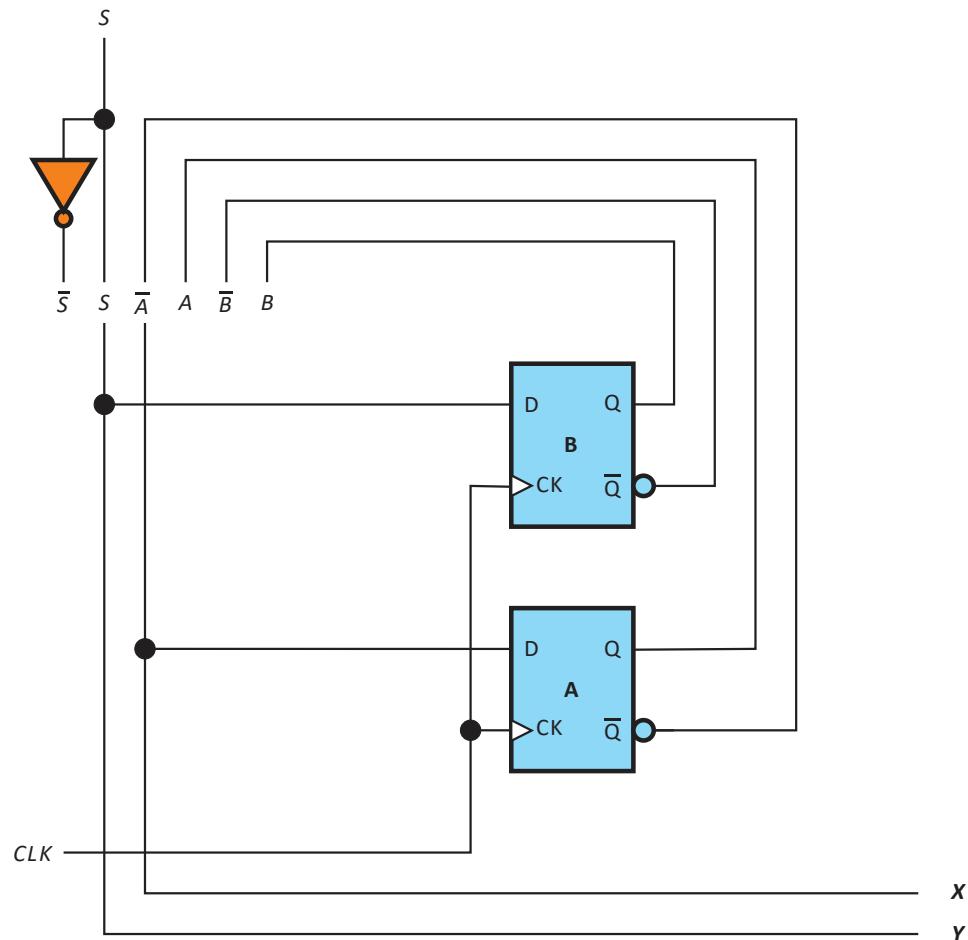
6.2. JK Flip-Flops


Present State		Input	Next State		Next State Decoder					
A	B	S	A	B	D_A	D_B	J_A	K_A	J_B	K_B
0	0	0	1	0	1	0	1	X	0	X
0	0	1	1	1	1	1	1	X	1	X
0	1	0	1	0	1	0	1	X	X	1
0	1	1	1	1	1	1	1	X	X	0
1	0	0	0	0	0	0	X	1	0	X
1	0	1	0	1	0	1	X	1	1	X
1	1	0	0	0	0	0	X	1	X	1
1	1	1	0	1	0	1	X	1	X	0


$$J_A = 1$$

$$K_A = 1$$



$$J_B = S$$


$$K_B = \bar{S}$$

7. Plot the output decoder logic.

Present State		Input	Next State		Output			
#	A	B	S	A	B	#	X	Y
0	0	0	0	1	0	2	1	0
0	0	0	1	1	1	3	1	1
1	0	1	0	1	0	2	1	0
1	0	1	1	1	1	3	1	1
2	1	0	0	0	0	0	0	0
2	1	0	1	0	1	1	0	1
3	1	1	0	0	0	0	0	0
3	1	1	1	0	1	1	0	1

8. Draw the logic diagram.

Logic Diagram