

Two differences between 3-variable Kmaps and 2-variable Kmaps

- Two variables, y and z , are grouped together.
- Column labels are not sequential. Column labels are 00, 01, 11, 01, respectively. Their decimal equivalents are 0, 1, 3, 2, respectively.

		yz	00	01	11	10
		x	0	1	3	2
		0	$x'y'z'$	$x'y'z$	$x'yz$	$x'yz'$
		1	$xy'z'$	$xy'z$	xyz	xyz'

FIGURE 3.16 Minterms and Kmap Format for Three Variables

		yz	00	01	11	10
		x	0	1	3	2
		0	4	5	7	6
		1				

These minterms have x in common

		yz	00	01	11	10
		x	0	1	3	2
		0	4	5	7	6
		1				

These minterms have x' in common

		yz	00	01	11	10
		x	0	1	3	2
		0	4	5	7	6
		1				

These minterms have y in common

		yz	00	01	11	10
		x	0	1	3	2
		0	4	5	7	6
		1				

These minterms have y' in common

		yz	00	01	11	10
		x	0	1	3	2
		0	4	5	7	6
		1				

These minterms have z in common

		yz	00	01	11	10
		x	0	1	3	2
		0	4	5	7	6
		1				

These minterms have z' in common

EXAMPLE 3.12 $F(x, y, z) = x'y'z + x'yz + xy'z + xyz$

SOLUTION: $F(x, y, z) = x'y'z + x'yz + xy'z + xyz = \sum(1,3,5,7)$

		yz	00	01	11	10
		x	0	1	3	2
0	0	0	1	1	0	
	1	4	5	7	6	0

- Put 1s in all the cells whose minterms appear in the Boolean function $F(x, y, z) = x'y'z + x'yz + xy'z + xyz$
- Put 0s in the remaining cells

		yz	00	01	11	10
		x	0	1	3	2
0	0	0	1	1	0	
	1	4	5	7	6	0

$$F(x, y, z) = z$$

- Simplify by circling adjacent cells.
- We can see that $F(x, y, z) = z$ by reviewing the diagrams on the previous page.

We can verify the simplification algebraically (and laboriously) as follows.

$$\begin{aligned}
 F(x, y, z) &= x'y'z + x'yz + xy'z + xyz && \text{Original expression} \\
 &= x'(y'z + yz) + x(y'z + yz) && \text{Distributive Law (OR Form) applied twice} \\
 &= (x' + x)(y'z + yz) && \text{Distributive Law (OR Form)} \\
 &= (1)(y'z + yz) && \text{Inverse Law (OR Form)} \\
 &= (y'z + yz) && \text{Identity Law (AND Form)} \\
 &= (y' + y)z && \text{Distributive Law (OR Form)} \\
 &= (1)z && \text{Inverse Law (OR Form)} \\
 &= z && \text{Identity Law (AND Form)}
 \end{aligned}$$

EXAMPLE 3.13 $F(x, y, z) = x'y'z' + x'y'z + x'yz + x'yz' + xy'z' + xyz'$

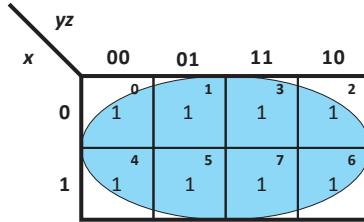
SOLUTION: $F(x, y, z) = x'y'z' + x'y'z + x'yz + x'yz' + xy'z' + xyz' = \sum(0,1,3,2,4,6)$

		yz	00	01	11	10	
		x	0	1	1	3	2
		0	1	1	1	1	
		1	1	0	0	1	6

- Put 1s in all the cells whose minterms appear in the Boolean function $F(x, y, z) = x'y'z' + x'y'z + x'yz + x'yz' + xy'z' + xyz'$
- Put 0s in the remaining cells

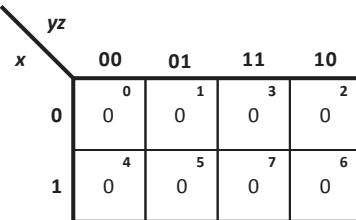
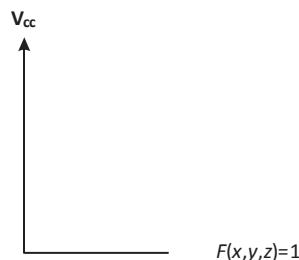
		yz	00	01	11	10	
		x	0	1	1	3	2
		0	1	1	1	1	
		1	1	0	0	1	6

$$F(x, y, z) = x' +$$

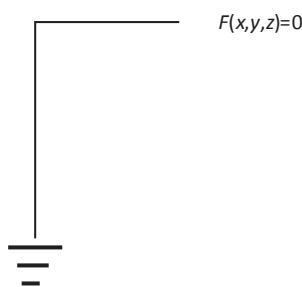

- Identify the first implicant

		yz	00	01	11	10	
		x	0	1	1	3	2
		0	1	1	1	1	
		1	1	0	0	1	6

$$F(x, y, z) = x' + z'$$

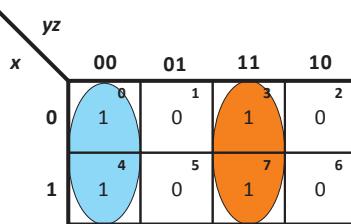
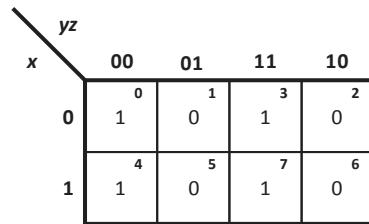


- Identify the second implicant by circling as many cells as possible.
- To simplify, you may circle cells that are included in other implicants.

EXAMPLE 3.14 Suppose we have a Kmap with all 1s:


$$F(x, y, z) = 1$$

V_{cc} : Power (V – Volts)

$$F(x, y, z) = 0$$



Ground

In class exercise: Draw the truth table, Kmap, and minimize the Boolean function $F(x, y, z) = x'y'z' + x'yz + xy'z' + xyz$

Solution: $F(x, y, z) = x'y'z' + x'yz + xy'z' + xyz = \Sigma(0,3,4,7)$

m_i	x	y	z	F
m_0	0	0	0	1
m_1	0	0	1	0
m_2	0	1	0	0
m_3	0	1	1	1
m_4	1	0	0	1
m_5	1	0	1	0
m_6	1	1	0	0
m_7	1	1	1	1

$$F(x, y, z) = \textcolor{blue}{y'z'} + \textcolor{orange}{yz} = (y \oplus z)'$$