

Two common representations for Boolean functions

- sum-of-products (SOP) – requires that the expression be a collection of ANDed variables (or product terms) that are ORed together.

Examples:

$F_1(x, y, z) = xy + yz' + xyz$	Yes – in SOP form
$F_2(x, y, z) = xy' + x(y + z')$	No – not in SOP form

- product-of-sums (POS) – requires that the expression be a collection of terms that are ORed together (sum terms) and that the Boolean function is a product of all the sum terms.

Examples:

$F_1(x, y, z) = (x + y)(x + z')(y + z')(y + z)$	Yes – in POS form
$F_2(x, y, z) = y(x'z + xz') + x(yz + yz')$	No – not in SOP form

Example 3.9 Consider a simple majority function. This is a function that, when given three inputs, outputs a 0 if less than half of its inputs are 1, and a 1 if at least half of its inputs are 1. Table 3.8 depicts the truth table for this majority function.

<i>x</i>	<i>y</i>	<i>z</i>	<i>F</i>
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

MINTERM

A *minterm*, m_i , is row in the truth table. The rows having a one (1) in the output column, summed together completely specify the output.

Example: Consider the truth-table below.

	<i>m_i</i>	<i>x</i>	<i>y</i>	<i>z</i>	<i>F</i>
$x'y'z'$	0	0	0	0	0
$x'y'z$	1	0	0	1	0
$x'yz'$	2	0	1	0	0
<i>x'yz</i>	3	0	1	1	1
$x'yz$	4	1	0	0	0
<i>xy'z</i>	5	1	0	1	1
<i>xyz'</i>	6	1	1	0	1
<i>xyz</i>	7	1	1	1	1

Row 0, for example, where $x = 0, y = 0$, and $z = 0$, is called *minterm zero* or m_0 .

We use summation notation to represent function F as the sum of minterms.

$$F = \sum (3, 5, 6, 7) = m_3 + m_5 + m_6 + m_7$$

We can express function F in several ways.

$$\begin{aligned}F(x, y, z) &= x'yz + xy'z + xyz' + xyz \\F(x, y, z) &= 011 + 101 + 110 + 111 \\F(x, y, z) &= m_3 + m_5 + m_6 + m_7 \\F &= \sum(3,5,6,7)\end{aligned}$$

Minterms are expressed as the sum of products (SOP).

MAXTERM

Maxterms are an alternative way of identifying the rows in a truth table. Maxterms are the complements of minterms.

$$\begin{array}{lll}M_0 = \overline{m_0} & M_0 = \overline{x'y'z'} & M_0 = x + y + z \\M_1 = \overline{m_1} & M_1 = \overline{x'y'z} & M_1 = x + y + z' \\M_2 = \overline{m_2} & M_2 = \overline{x'yz'} & M_2 = x + y' + z \\M_3 = \overline{m_3} & M_3 = \overline{x'yz} & M_3 = x + y' + z' \\M_4 = \overline{m_4} & M_4 = \overline{xy'z'} & M_4 = x' + y + z \\M_5 = \overline{m_5} & M_5 = \overline{xy'z} & M_5 = x' + y + z' \\M_6 = \overline{m_6} & M_6 = \overline{xyz'} & M_6 = x' + y' + z \\M_7 = \overline{m_7} & M_7 = \overline{xyz} & M_7 = x' + y' + z'\end{array}$$

Continuing our example and recalling that $F(x, y, z) = \sum(3,5,6,7)$, we observe that $\overline{F} = \sum(0,1,2,4) = x'y'z' + x'y'z + x'yz' + xy'z'$. We find \overline{F} by finding all the rows where a zero (0) was entered in the output column.

To find F , using our complement, we complement \overline{F} .

$$\begin{aligned}F = \overline{\overline{F}} &= \overline{x'y'z' + x'y'z + x'yz' + xy'z'} = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z) \\F &= M_0 M_1 M_2 M_4 = \prod(0,1,2,4)\end{aligned}$$

Once the minterms for a function are known, we can immediately express the same function as a product of maxterms.

Example:

Given

$$F(x, y, z) = \sum(3,5,6,7)$$

we know immediately that

$$F(x, y, z) = \prod(0,1,2,4)$$

In summary, we can find a function F as the sum of products – the sum of those minterms where a one (1) has been entered in the output column or we can find function F as the product of sums – the product of those maxterms where a zero has been entered in the output column.