

Example 3.1

$$\begin{aligned}
 F(x, y) &= xy + xy \\
 &= xy
 \end{aligned}
 \quad \begin{aligned}
 &\text{Original Statement} \\
 &\text{Idempotent Law - OR Form} \\
 &\quad x + x = x
 \end{aligned}$$

Example 3.2 Given the function $F(x, y, z) = x'yz + x'yz' + xz$, we simplify as follows

$$\begin{aligned}
 F(x, y, z) &= x'yz + x'yz' + xz \\
 &= x'y(z + z') + xz \\
 &= x'y(1) + xz \\
 &= x'y + xz
 \end{aligned}
 \quad \begin{aligned}
 &\text{Original Statement} \\
 &\text{Distributive Law - OR Form} \\
 &\text{Inverse Law - OR Form} \\
 &\text{Identity Law - AND Form}
 \end{aligned}$$

Example 3.3 Given the function $F(x, y, z) = y + (xy)'$, we simplify as follows

$$\begin{aligned}
 F(x, y, z) &= y + (xy)' \\
 &= y + x' + y' \\
 &= y + y' + x' \\
 &= 1 + x' \\
 &= 1
 \end{aligned}
 \quad \begin{aligned}
 &\text{Original Statement} \\
 &\text{DeMorgan's Law - AND Form} \\
 &\text{Commutative Law - OR Form} \\
 &\text{Inverse Law - OR Form} \\
 &\text{Null (or Dominance) Law - OR Form}
 \end{aligned}$$

Example 3.4 Given the function $F(x, y, z) = (xy)'(x' + y)(y' + y)$, we simplify as follows

$$\begin{aligned}
 F(x, y, z) &= (xy)'(x' + y)(y' + y) \\
 &= (xy)'(x' + y)(1) \\
 &= (xy)'(x' + y) \\
 &= (x' + y')(x' + y) \\
 &= x' + y'y \\
 &= x' + 0 \\
 &= x'
 \end{aligned}
 \quad \begin{aligned}
 &\text{Original Statement} \\
 &\text{Inverse Law - OR Form} \\
 &\text{Identity Law - AND Form} \\
 &\text{DeMorgan's Law - AND Form} \\
 &\text{Distributive Law - AND Form} \\
 &\text{Inverse Law - AND Form} \\
 &\text{Identity Law - OR Form}
 \end{aligned}$$

Practice Given the function $F(x, y, z) = y(x' + (x + y)')$, we simplify as follows

$$\begin{aligned}
 F(x, y, z) &= y(x' + (x + y)') \\
 &= \\
 &= \\
 &= \\
 &= \\
 &=
 \end{aligned}
 \quad \begin{aligned}
 &\text{Original Statement}
 \end{aligned}$$

Practice Given the function $F(x, y, z) = y(x' + (x + y)')$, we simplify as follows

$F(x, y, z)$	$= y(x' + (x + y)')$	Original Statement
	$= y(x' + x'y')$	DeMorgan's Law – OR Form
	$= y(x'(1 + y'))$	Distributive Law – OR Form
	$= y(x'(1))$	Null (or Dominance) Law – OR Form
	$= y(x')$	Identity Law – AND Form
	$= x'y$	Commutative Law – AND Form

Trickier Example 3.5 Given the function $F(x, y, z) = x'(x + y) + (y + x)(x + y')$, we simplify as follows

$F(x, y, z)$	$= x'(x + y) + (y + x)(x + y')$	Original Statement
	$= x'(x + y) + (x + y)(x + y')$	Commutative Law – OR Form
	$= x'(x + y) + (x + yy')$	Distributive Law – AND Form
	$= x'(x + y) + (x + 0)$	Inverse Law – AND Form
	$= x'(x + y) + x$	Identity Law – OR Form
	$= x'x + x'y + x$	Distributive Law – OR Form
	$= 0 + x'y + x$	Inverse Law – AND Form
	$= x'y + x$	Identity Law – OR Form
	$= x + x'y$	Commutative Law – OR Form
	$= (x + x')(x + y)$	Distributive Law – AND Form
	$= (1)(x + y)$	Inverse Law – OR Form
	$= x + y$	Identity Law – AND Form

Practice Given the function $F(x, y, z) = xy'z + x(y + z')' + xy'z'$, we simplify as follows

Practice Given the function $F(x, y, z) = xy'z + x(y + z')' + xy'z'$, we simplify as follows

$F(x, y, z)$	$= xy'z + x(y + z')' + xy'z'$	Original Statement
	$= xy'z + xy'z' + x(y + z')'$	Commutative Law – OR Form
	$= xy'(z + z') + x(y + z')'$	Distributive Law – OR Form
	$= xy'(1) + x(y + z')'$	Inverse Law – OR Form
	$= xy' + x(y + z')$	Identity Law – AND Form
	$= xy' + x(y'z)$	DeMorgan's Law – OR Form
	$= xy'(1 + z)$	Distributive Law – OR Form
	$= xy'(1)$	Null (or Dominance) Law – OR Form
	$= xy'$	Identity Law – AND Form

Trickier Example 3.6 Given the function $F(x, y, z) = xy + x'z + yz$, we simplify as follows

$$\begin{aligned}
 F(x, y, z) &= xy + x'z + yz \\
 &= xy + x'z + yz(1) \\
 &= xy + x'z + yz(x + x') \\
 &= xy + x'z + (yz)x + (yz)x' \\
 &= xy + x'z + x(yz) + x'(yz) \\
 &= xy + x'z + x(yz) + x'(zy) \\
 &= xy + x'z + (xy)z + (x'z)y \\
 &= xy + (xy)z + x'z + (x'z)y \\
 &= xy(1 + z) + x'z(1 + y) \\
 &= xy(1) + x'z(1) \\
 &= xy + x'z
 \end{aligned}$$

Original Statement
 Identity Law – AND Form
 Inverse Law – OR Form
 Distributive Law – OR Form
 Commutative Law – AND Form (twice)
 Commutative Law – AND Form
 Associative Law – AND Form (twice)
 Commutative Law – OR Form
 Distributive Law – OR Form (twice)
 Null (or Dominance) Law – OR Form (twice)
 Identity Law – AND Form (twice)

Example 3.7 Prove that $(x + y)(x' + y) = y$.

$$\begin{aligned}
 (x + y)(x' + y) &= xx' + xy + yx' + yy \\
 &= 0 + xy + yx' + yy \\
 &= 0 + xy + yx' + y \\
 &= xy + yx' + y \\
 &= yx + yx' + y \\
 &= y(x + x') + y \\
 &= y(1) + y \\
 &= y + y \\
 &= y
 \end{aligned}$$

Distributive Law – OR Form (twice)
 Inverse Law – AND Form
 Idempotent Law – AND Form
 Identity Law – OR Form
 Commutative Law – AND Form
 Distributive Law – OR Form
 Inverse Law – OR Form
 Identity Law – AND Form
 Idempotent Law – OR Form

Prove DeMorgan's Law – OR Form $(x + y)' = x'y'$ by means of a truth table.

1. Create column titles – setting up the proof. There are four (4) rows, one for each of the possible combinations for the values of x and y .

x	y	$x + y$	$(x + y)'$	=	$x'y'$	x'	y'

2. Fill in values for y .

x	y	$x + y$	$(x + y)'$	=	$x'y'$	x'	y'
	0						
	1						
	0						
	1						

3. Fill in complementary values for y' .

x	y	$x + y$	$(x + y)'$	=	$x'y'$	x'	y'
	0						1
	1						0
	0						1
	1						0

4. Fill in values for x so that each row has a unique combination of x and y and so that all combinations are listed.

x	y	$x + y$	$(x + y)'$	=	$x'y'$	x'	y'
0	0						1
0	1						0
1	0						1
1	1						0

5. Fill in complementary values for x' .

x	y	$x + y$	$(x + y)'$	=	$x'y'$	x'	y'
0	0					1	1
0	1					1	0
1	0					0	1
1	1					0	0

6. Compute values for $x + y$.

x	y	$x + y$	$(x + y)'$	=	$x'y'$	x'	y'
0	0	0				1	1
0	1	1				1	0
1	0	1				0	1
1	1	1				0	0

7. Compute values for $(x + y)'$.

x	y	$x + y$	$(x + y)'$	=	$x'y'$	x'	y'
0	0	0	1			1	1
0	1	1	0			1	0
1	0	1	0			0	1
1	1	1	0			0	0

8. Compute values for $x'y'$.

x	y	$x + y$	$(x + y)'$	=	$x'y'$	x'	y'
0	0	0	1		1	1	1
0	1	1	0		0	1	0
1	0	1	0		0	0	1
1	1	1	0		0	0	0

9. Note that for every combination of x and y – that is all possible values of x and y that $(x + y)' = x'y'$.

x	y	$x + y$	$(x + y)'$	=	$x'y'$	x'	y'
0	0	0	1	1	1	1	1
0	1	1	0	1	0	1	0
1	0	1	0	1	0	0	1
1	1	1	0	1	0	0	0