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2.7  Error Detection and Correction 

 
Parity 

Even parity: Add a bit to make the number of ones (1s) transmitted even. 
  
Odd parity: Add a bit to make the number of ones (1s) transmitted odd. 

 
Example and ASCII A is coded 100 0001 

 Parity ASCII ‘A’ Binary  Hex 
Even parity: 0 100 0001 0100 0001 41 
     
Odd parity: 1 100 0001 1100 0001 C1 

 
In general, the error correction-detection bits are called a syndrome, they are redundant, 
they are computed so both transmitter and receiver can compute the syndrome 
independent of a noisy transmission line. 

 
 

Sender
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Figure 1-1.  Sender, Receiver and a Noisy Transmission Line. 
 

 
  



Computer Organization I  2.7 Error Detection and Correction 
CMSC 2833  Lecture 18 

 2 

2.7.1 Cyclic Redundancy Check 
 

• Modulo 2 arithmetic works like clock arithmetic. 
• In clock arithmetic, if we add 2 hours to 11:00, we get 1:00. 
• In modulo 2 arithmetic if we add 1 to 1, we get 0. The addition rules couldn’t be 

simpler: 
 

 
 

Modulo 2 Arithmetic 
 
Example 2.38: Find the sum of 10112 and 1102 modulo 2. 
 

      1 0 1 1 
     +  1 1 0 
      1 1 0 1 

 
Example 2.39: Find the quotient and remainder when 10010112 is divided by 10112 using 
modulo 2 arithmetic. 
 

       1 0 1 0    
1 0 1 1 1 0 0 1 0 1 1    
    1 0 1 1       
    0 0 1 0 0 1     
      1 0 1 1     
      0 0 1 0 1    

 
 
• Find the quotient and remainder when 1111101 is divided by 1101 in modulo 2 

arithmetic… 
– We find the quotient is 1011, and the remainder is 0010. 

  

0 + 0 = 0 0 + 1 = 1
 

1 + 0 = 1 1 + 1 = 0
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• This procedure is very useful to us in calculating CRC syndromes. 
 

       1 0 1 1 0 1 1   
1 1 0 1 1 1 1 1 1 0 1 0 0 0   
    1 1 0 1         
      1 0 1 0       
      1 1 0 1       
       1 1 1 1      
       1 1 0 1      
         1 0 0 0    
         1 1 0 1    
          1 0 1 0   
          1 1 0 1   
          0 1 1 1   

 
• Suppose we want to transmit the information string: 1111101. 
• The receiver and sender decide to use the (arbitrary) polynomial pattern, 1101. 
• The information string is shifted left by one position less than the number of positions 

in the divisor. 
• The remainder is found through modulo 2 division (at right) and added to the 

information string: 1111101000 + 111 = 1111101111. 
• If no bits are lost or corrupted, dividing the received information string by the agreed 

upon pattern will give a remainder of zero. 
• We see this is so in the calculation at the below. 

       1 0 1 1 0 1    
1 1 0 1 1 1 1 1 1 0 1 1 1 1   
    1 1 0 1         
      1 0 1 0       
      1 1 0 1       
       1 1 1 1      
       1 1 0 1      
         1 0 1 1    
         1 1 0 1    
          1 1 0 1   
          1 1 0 1   
          0 0 0 0   
                

 
• Real applications use longer polynomials to cover larger information strings.   

– Some of the standard polynomials are listed in the text. 
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2.7.1 Hamming Codes 
 

• Data transmission errors are easy to fix once an error is detected.  
– Just ask the sender to transmit the data again. 

• In computer memory and data storage, however, this cannot be done. 
– Too often the only copy of something important is in memory or on disk. 

• Thus, to provide data integrity over the long term, error correcting codes are 
required. 

 
• Hamming codes are code words formed by adding redundant check bits, or parity 

bits, to a data word. 
• The Hamming distance between two code words is the number of bits in which two 

code words differ. 
 
 

This pair of bytes has Hamming distance 
of 3: 

1 0 0 0 1 0 0 1 
1 0 1 1 0 0 0 1 

 
• The minimum Hamming distance for a code is the smallest Hamming distance 

between all pairs of words in the code.  
• The minimum Hamming distance for a code, 𝐷𝐷(𝑚𝑚𝑚𝑚𝑚𝑚), determines its error detecting 

and error correcting capability.  
• For any code word, 𝑋𝑋, to be interpreted as a different valid code word, 𝑌𝑌, at least 

𝐷𝐷(𝑚𝑚𝑚𝑚𝑚𝑚) single-bit errors must occur in 𝑋𝑋. 
• Thus, to detect 𝑘𝑘 (or fewer) single-bit errors, the code must have a Hamming distance 

of 𝐷𝐷(𝑚𝑚𝑚𝑚𝑚𝑚)  =  𝑘𝑘 +  1. 
• Hamming codes can detect  

Detect 𝑫𝑫(𝒎𝒎𝒎𝒎𝒎𝒎) − 𝟏𝟏 
  
Correct 

�
𝑫𝑫(𝒎𝒎𝒎𝒎𝒎𝒎) − 𝟏𝟏

𝟐𝟐
� 

 
 

• Thus, a Hamming distance of 2k + 1 is required to be able to correct k errors in any 
data word. 

• Hamming distance is provided by adding a suitable number of parity bits to a data 
word. 
 

• Suppose we have a set of 𝑛𝑛-bit code words consisting of 𝑚𝑚 data bits and 𝑟𝑟 (redundant) 
parity bits.  

• Suppose also that we wish to detect and correct one single bit error only. 
• An error could occur in any of the 𝑛𝑛 bits, so each code word can be associated with 𝑛𝑛 

invalid code words at a Hamming distance of 1. 



Computer Organization I  2.7 Error Detection and Correction 
CMSC 2833  Lecture 18 

 5 

• Therefore, we have 𝑛𝑛 +  1 bit patterns for each code word: one valid code word, and 
𝑛𝑛 invalid code words 

• Using 𝑛𝑛 bits, we have 2𝑛𝑛 possible bit patterns.  We have 2𝑚𝑚 valid code words with 𝑟𝑟 
check bits (where 𝑛𝑛 =  𝑚𝑚 +  𝑟𝑟).  

• For each valid codeword, we have (𝑛𝑛 + 1) bit patterns (1 legal and 𝑛𝑛 illegal). 
• This gives us the inequality:  

 (𝑛𝑛 + 1) × 2𝑚𝑚 ≤ 2𝑛𝑛 
• Because 𝑛𝑛 =  𝑚𝑚 +  𝑟𝑟, we can rewrite the inequality as: 

(𝑚𝑚 + 𝑟𝑟 + 1) × 2𝑚𝑚 ≤ 2𝑚𝑚+𝑟𝑟 
or 

(𝒎𝒎 + 𝒓𝒓 + 𝟏𝟏) ≤ 𝟐𝟐𝒓𝒓 
– This inequality gives us a lower limit on the number of check bits that we need 

in our code words. 
 

• Suppose we have data words of length 𝑚𝑚 =  4.  Then: 

(4 + 𝑟𝑟 + 1) ≤ 2𝑟𝑟 
 
 implies that 𝑟𝑟 must be greater than or equal to 3.  

– We should always use the smallest value of r that makes the inequality true. 
• This means to build a code with 4-bit data words that will correct single-bit errors, we 

must add 3 check bits. 
• Finding the number of check bits is the hard part.  The rest is easy. 
 
• Suppose we have data words of length 𝑚𝑚 =  8.  Then: 

(8 + 𝑟𝑟 + 1) ≤ 2𝑟𝑟 
 
 implies that 𝑟𝑟 must be greater than or equal to 4. 

• This means to build a code with 8-bit data words that will correct single-bit errors, we 
must add 4 check bits, creating code words of length 12. 
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• So how do we assign values to these check bits? 
 

• With code words of length 12, we observe that each of the bits, numbered 1 through 
12, can be expressed in powers of 2.  Thus: 
• 1 = 2 0      
• 2 = 2 1   
• 3 = 2 1 + 2 0   
• 4 = 2 2   

• 5 = 2 2 + 2 0 

• 6 = 2 2 + 2 1 

• 7 = 2 2 + 2 1 + 2 0 

• 8 = 2 3 

• 9 = 2 3 + 2 0 

• 10 = 2 3 + 2 1 

• 11 = 2 3 + 2 1 + 2 0 

• 12 = 2 3 + 2 2 

 

– 1 (= 20) contributes to all of the odd-numbered digits, including digits 1, 3, 5, 
7, 9, and 11. 

– 2 (= 21) contributes to the digits, 2, 3, 6, 7, 10, and 11. 
– 4 (= 22) contributes to the digits, 4, 5, 6, 7, and 12 
– 8 (=23) contributes to the digits 8, 9, 10, 11, and 12 

𝟐𝟐𝟑𝟑 𝟐𝟐𝟐𝟐 𝟐𝟐𝟏𝟏 𝟐𝟐𝟎𝟎     
        

0 0 0 1 1    
0 0 1 0 2 2   
0 0 1 1 3 3   
0 1 0 0 4  4  
0 1 0 1 5  5  
0 1 1 0 6 6 6  
0 1 1 1 7 7 7  
1 0 0 0 8   8 
1 0 0 1 9   9 
1 0 1 0 10 10  10 
1 0 1 1 11 11  11 
1 1 0 0 12  12 12 
1 1 0 1 13  13 13 
1 1 1 0 14 14 14 14 
1 1 1 1 15 15 15 15 

 
• We can use this idea in the creation of our check bits. 
• Using our code words of length 12, number each bit position starting with 1 in the 

low-order bit. 
• Each bit position corresponding to a power of 2 will be occupied by a check bit. 
• These check bits contain the parity of each bit position for which it participates in the 

sum. 
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• Parity will be stored in bits whose position is an even power of 2, in bit positions 1, 2, 
4, 8, … 

 
 

123456789101112

PPPP

 
 

• Since 1 (=20) contributes to the values 1, 3 , 5, 7, 9, and 11, bit 1 will check parity over 
bits in these positions. 

• Since 2 (= 21) contributes to the values 2, 3, 6, 7, 10, and 11, bit 2 will check parity 
over these bits. 

• Since 4 (= 22) contributes to the values 4, 5, 6, 7, and 12 and 11, bit 4 will check parity 
over these bits. 

• Fill in the data bits, 11010110, starting from the left, in bit position 12, and moving to 
the right. Put no data bits in the parity positions, marked in yellow.,  
 

 

123456789101112

1 1 0 1 0 1 1 0

 
 

• Now compute the parity bit in position 1.  Recall that bit 1 checks bits 3, 5, 7, 9 and 
11 

1 1 0 1 0 1 Value 
11 9 7 5 3 1 Bit Position 

 
 

123456789101112

1 1 0 1 0 1 1 10

 
 

 
 

• Bit 2 checks the bits 2, 3, 6, 7, 10, and 11, so its value is 0. 
1 0 0 1 0 0 Value 

11 10 7 6 3 2 Bit Position 
 

 

123456789101112

1 1 0 1 0 1 11 0 0
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• Bit 4 checks the bits 5, 6, 7, and 12, so its value is 1. 
1 0 1 1 1 Value 

12 7 6 5 4 Bit Position 
 

 

123456789101112

1 1 0 1 0 1 111 00

 
 

 
• Bit 8 checks the bits 9, 10, 11, and 12, so its value is also 1. 

1 1 0 1 1 Value 
12 11 10 9 8 Bit Position 

 
 

123456789101112

1 1 0 1 1 0 1 111 00

 
 

 
• Using the Hamming algorithm, we can not only detect single bit errors in this code 

word, but also correct them! 
 

123456789101112

1 1 0 1 1 0 1 111 00

 
 

Valid Message 
 

123456789101112

1 1 0 1 1 0 1 110 00

 
 

Invalid Message 
 

• Suppose an error occurs in bit 5, as shown above.  Our parity bit values are: 
– Bit 1 checks 1, 3, 5, 7, 9, and 11. This is incorrect as we have a total of 3 ones 

(which is not even parity). 
1 1 0 0 0 0 Does not match transmitted parity. 

11 9 7 5 3 1 Bit Position 
 

– Bit 2 checks bits 2, 3, 6, 7, 10, and 11. The parity is correct.  
1 0 0 1 0 0 Matches transmitted parity 

11 10 7 6 3 2 Bit Position 
 

– Bit 4 checks bits 4, 5, 6, 7, and 12. This parity is incorrect, as we 3 ones. 
1 0 1 0 0 Does not match transmitted parity. 

12 7 6 5 4 Bit Position 
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– Bit 8 checks bit 8, 9, 10, 11, and 12. This parity is correct. 
1 1 0 1 1 Matches transmitted parity 

12 11 10 9 8 Bit Position 
 

– Putting the parity bits adjacent and in descending order we identify the bad 
bit 

0 1 0 1 5, the position of the bad bit 
8 4 2 1 Bit Position 

 
• We have erroneous parity for check bits 1 and 4. 
• With two parity bits that don’t check, we know that the error is in the data, and not 

in a parity bit. 
• Which data bits are in error?  We find out by adding the bit positions of the erroneous 

bits. 
• Simply, 1 + 4 = 5.  This tells us that the error is in bit 5. If we change bit 5 to a 1, all 

parity bits check and our data are restored. 
 

2.7.3 Reed-Solomon 
• Read for yourself. 

 
3.  Conclusion 

• Computers store data in the form of bits, bytes, and words using the binary 
numbering system. 

• Hexadecimal numbers are formed using four-bit groups called nibbles. 
• Signed integers can be stored in one’s complement, two’s complement, or signed 

magnitude representation. 
• Floating-point numbers are usually coded using the IEEE 754 floating-point standard. 

 


