Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

oukswNE

10.

11.

12.

13.
14.

Print your name on your scantron in the space labeled NAME.

Print CMSC 2613 in the space labeled SUBJECT.

Print the test number and version, T3/V1, in the space labeled TEST NO.

Print the date, 5-5-2017, in the space labeled DATE.

Print your CRN number, 20975, in the space labeled PERIOD.

This is a closed-book examination. No reference materials are permitted. No notes are
permitted.

You may not consult your neighbors, colleagues, or fellow students to answer the questions
on this test.

Cellular phones are prohibited. The possessor of a cellular phone will receive a zero (0) if the
phone rings or is visible during the test.

You may use your personal calculator on this test. You are prohibited from loaning your
calculator or borrowing a calculator from another person enrolled in this course.

Markthe best selection that satisfies the question. Ifselection b is better that selections a or
d, then mark selection b. Mark only one selection.

Darkenyour selections completely. Make a heavy black mark that completely fills your
selection.

Answer all 50 questions.

Recordyour answers on SCANTRON form 882-E (It is green!).

When you have completed the test, place your scantron, face up, between pages 2 and 3 of
your questionnaire and submit both the questionnaire and your scantron to your instructor.

Programming Il
CMSC 2613

CRN 20975 Test 3 Version 1
Spring 2017

What is the time complexity of function Deq for a queue whose elements are

individually stored in dynamically allocated elements as shown in the Figure below?

a. O(n)

b. 0(1)

c. O(nlog,n)
d. O(log,n)

struct QueueException{

b

QueueException(char* m)

{ cout<<end/<<”l amtheQueueandlam” <<m << “.” << endl;

}

template <class T>
class Queue {

struct Element {
Element* newer;
T data;

Element(Element* n, T d):newer(n),data(d){}//Constructor

Element(T t):newer(0),v(tX}
Element(){}

b

Element* oldest;

Element* newest;

int count;

void Kill(Element* e{...}

public:

b

Queue();

~Queue();
bool/sEmpty(voidX...}
bool/sFull(void){...}
void Enqg(T v) {...}

T Deg(void){...}

int Count(void){...}
Queue

//Points to the next newer element
//Value oftypeT stored in this element

//Constructor
//Constructor

//Points to the oldest element
//Points to the newest element
//Records the number of elements
//Reclaims storage for all elements

//Constructor

//Destructor

//1s the Queue empty?

//1s the Queue full?

//Insertavalue, v, on the Queue
//Removetheoldestvalue on the Queue
//Return the number of elements on the

Figure 1. class Queue

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

2. What is the time complexity of function Insert from class Heap shown in the Figure
below?

O(nlog,n)
O(logzn)
0(1)

0(n)

oo oo

void Insert(intv)
{ if (IsFull()) throw HeapFullException();
int a=++count;
while(H[a/2]>v){
Hlal=H[a/2];
a/=2;
}
H[a]=v;

Figure 2. Function Insert

3. What is the time complexity of member function Sort in class Heap as shown in the
Figure below?

a. 01

b. O(nlog,n)
c. O(n)

d. O(log,n)

void Sort(void)
{ int*J/=newiint[size];
J[0]=INT_MIN;
int 0=1;
while (YsEmpty()) {
int v=Remove();
Ja++]=v;
}
if (H) delete[] H;
H=J;
count=a-1;

Figure 3. Function Sort

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

4. Which of the following is a valid implementation of function IsFull for a stack whose
individual elements are allocated dynamically as shown in the Figure below?

a. bool/sFull(void)
{ Element* e=new Element;
boolv=(bool)(!e);
if (e) deletee;
returny;

}
b. bool/sFull(void)
{ Element* e=new Element;
boolv=(bool)(e);
if (e) deletee;
returny;
}
c. bool/sFullvoid)f{return tos!=0;}
d. bool/sFullvoidf{return true;}

struct StackException{
StackException(char* m)
{ cout<<end/<<”l amtheStackandlam “ << m << “.” << endl;
}

b

template <class T>

class Stack {

struct Element {
Element* prev; //Points to the previous element on the
Stack
T data; //Dataof type Tstored in this element
Element(Element™* p,T d):prev(p),data(d){} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(X} //Constructor, initialize no member data
b
Element* tos; //Points to the element on top ofthe Stack
void Kill[Element* e) {...} //Reclaims storage for all elements on
the
//Stack
public:
Stack():...{...} //Constructor
~Stack(){}

bool/sEmpty(void)...}
bool/sFull(void){...}
void Push(T d) {...}
T Pop(void){...}

b

Figure 4. class Stack

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

5. Which of the following is a valid implementation of function Push for a stack whose
elements are stored in a dynamically allocated array as shown in the Figure below?

a. void Push(T v){if (IsFull()) throw StackException(“full”);S[tos]=v;tos++;}

b. void Push(T v){if (IsFull()) throw StackException(“full”);S[++tos]=v;}

c. void Push(T v){if (IsFull()) throw StackException(“full”);S[tos]=v;++tos;}

d. void Push(T v){if (IsFull()) throw StackException(“full”’);S[tos++]=v;}
struct StackException{

StackException(char* m)
{ cout<<endl/<<”l amtheStackandlam“<<m<<“.” << endl;
}

b

template <class T>

class Stack {

int size; //Number of elements available
int tos; //Indexofthe element on top of the Stack
T*S; //Points to an array of type T containing the elements of the
Stack
public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaimstorage used to implement the Stack
bool/sEmpty(voiv); //Isthe Stack empty?
bool/sFull(void); //1s the Stack full?
void Push(T v); //Insertavalue, v, on top ofthe Stack.
T Pop(void); //Remove and return the element on top ofthe Stack

b

Figure 5. class Stack

6. Which of the following is a valid implementation of the constructor, Queue, for a queue
whose elements are individually stored in dynamically allocated elements as shown in
the Figure below?

Queue(){count=0;oldest=newest=0;}
Queue():count(0),oldest(nil),newest(nil){}

Queue():count(0{Element* e=new Element; oldest=newest=e; e->newer=e;}
Queue():count(0){newest=oldest;}

oo oo

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

struct QueueException{
QueueException(char* m)
{ cout<<endl/<<”l amtheQueueandlam® <<m << “.” << endl;

}
b
template <class 7>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value oftypeT stored in this element
Element(Element* n, T d):newer(n),data(d){}//Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(X{} //Constructor
b
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill[Element* e){...} //Reclaims storage for all elements
public:
Queue(); //Constructor
~Queue(); //Destructor
bool/sEmpty(void)...} //1s the Queue empty?
bool/sFull(void){...} //\s the Queue full?
void Eng(T v){...} //Insertavalue, v, onthe Queue
T Deg(void){...} //Removetheoldestvalue onthe Queue
int Count(void){...} //Return the number of elements on the
Queue

b

Figure 6. class Queue

7. Select the expressions in suffix notation equivalent to the expression treein the Figure
below.

(1-2)/3*4*5+6/7
12-3/45*%67/+*
1-2/3*4*5+6/7
*[.123+*45/67

o0 oo

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

Figure 7. An expression tree

8. What is the time complexity of function Eng for a queue whose elements are stored in a
dynamically allocated array as shown in the Figure below?

a. 0(1)

b. O(nlog,n)
c. O(n)

d. O(log,n)

struct QueueException{
QueueException(char* m)
{ cout<<end/<<”l amtheQueueandlam” <<m << “.” << endl;
}

b

template <class T>

class Queue {

int size; //Number of available elements to store values on the Queue

int count; //Number of elements stored on the Queue

™Q; //Points to a dynamically allocated array used to implement the
// Queue

int oldest; //Indexofthe oldest element on the Queue

int newest; //Index ofthe newest element on the Queue

public:

Queue(intsz=100){...} //Constructor, initialize member data and allocate storage for

the
//Queue

~Queue()...} //Destructor, reclaimstorage

bool/sEmpty(void){...} //Is the Queue empty?

bool/sFullivoid){..} //IstheQueuefull?

void Eng(T d){...} //Insertavalue, d, onthe Queue

T Deg(void)...} //Remove and return the oldest value on the Queue

b

Figure 8. class Queue

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

9. Which of the following is a valid implementation of the function Kill for a queue whose
individual elements are allocated dynamically as shown in the Figure below?

a. voidKill(Element* e)
{ if(e){
deletee;
Killle->newer);

}
}
b. void Kill(Element* e)

{ if(e) return;
Killle->newer);

deletee;
}
c. voidKill(Element* e)
{ if(le)f
deletee;
Killle->newer);
}
}

d. voidKill(Element* e)
{ if('e)return;
Killle->newer);
deletee;

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

struct QueueException{
QueueException(char* m)
{ cout<<endl/<<”l amtheQueueandlam® <<m << “.” << endl;

}
b
template <class 7>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value oftypeT stored in this element
Element(Element* n, T d):newer(n),data(d{} //Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(}{} //Constructor
b
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill[Element* e){...} //Reclaims storage for all elements
public:
Queue(); //Constructor
~Queue(); //Destructor
bool/sEmpty(void)...} //1s the Queue empty?
bool/sFull(void){...} //1s the Queue full?
void Eng(T v){...} //Insertavalue, v, onthe Queue
T Deg(void){...} //Removetheoldest value on the Queue
int Count(void){...} //Return the number ofelements on the
Queue

b

Figure 9. class Queue

10. What is the time complexity of function Indexfor a list whose elements are stored in a
dynamically allocated array? Function Index is given in Figure below.

a. O(n)

b. O(log,n)
c. 0D

d. O(nlog,n)

Programming Il CRN 20975
CMSC 2613

Test 3 Version 1
Spring 2017

int Index(T key)
{ intlo=1,hi=count;
while (Jo<=hi) {
int m=(lo+hi)/2;
if (key==L[m]) return m;
if (key<L[m]) hi=m-1; else lo=m+1;
}

return 0;

Figure 10. Function Index

11. Which of the following is a valid implementation of the constructor, Stack, for a stack
whose elements are stored in a dynamically allocated arrayas shown in the Figure

below?

o0 oo

Stack(int sz=100):size(sz),tos(0){S=new T[sz];}
Stack(int size=100):size(sz),tos(-1){S=new T[sz];}
Stack(int size=100):size(100),tos(0){S=new T[size];}
Stack(int sz=100){size=sz;tos=-1;S=new T[size];}

struct StackException{
StackException(char* m)

{ cout<<endl/<<”l amtheStackandlam “<<m<<“.”<<endl;

}
b
template <class 7>
class Stack {

int size; //Number of elements available
int tos; //Indexofthe element on top of the Stack
T*S; //Points to an array of type T containing the elements of the
Stack
public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaim storage used to implement the Stack
bool/sEmpty(void); //Isthe Stack empty?
bool/sFullivoid); //1s the Stack full?
void Push(T d); //Insert avalue, v, on top ofthe Stack.
T Pop(void); //Remove and return the element on top ofthe Stack

L

Figure 11. class Stack

10

Programming Il
CMSC 2613

CRN 20975

Test 3 Version 1
Spring 2017

12. Which of the following is a valid implementation of the function Deg, for a queue whose
elements are stored in a dynamically allocated array as shown in the Figure below?

a. T Deg(void)

{

}

if (IsEmpty()) throw QueueException("empty");
oldest++;

T v=Q[oldest];

count--;

returny;

b. T Deg(void)

{

}

if (IsEmpty()) throw QueueException("empty");
T v=Q[(oldest+1)%size];

count--;

returny;

c. TDeg(void)

{

}

if (IsEmpty()) throw QueueException("empty");
oldest=(oldest+1)%size;

T v=Q[oldest];

count--;

returny;

d. T Deg(void)

{

if (IsEmpty()) throw QueueException("empty");
T v=Q[oldest];

oldest=(oldest+1)%size;

count--;

returny;

11

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

struct QueueException{
QueueException(char* m)
{ cout<<end/<<”l amtheQueueandlam” <<m << “.”<< endl;

}
b
template <class 7>
class Queue {

int size; //Number of available elements to store values on the Queue

int count; //Number of elements stored on the Queue

™ Q; //Points to a dynamically allocated array used to implement the
// Queue

int oldest; //Indexofthe oldest element on the Queue

int newest; //Index ofthe newest element on the Queue

public:

Queue(intsz=100)...} //Constructor, initialize member data and allocate storage for

the
//Queue

~Queue()...} //Destructor, reclaimstorage

bool/sEmpty(void){...} //Isthe Queue empty?

bool/sFullivoid){...} //IstheQueuefull?

void Eng(T d){...} //Insertavalue, d, onthe Queue

T Deg(void){...} //Remove and return the oldest value on the Queue

b

Figure 12. class Queue

13. What is the time complexity of function Insert for a list whose elementsare stored in a
dynamically allocated array? Function Insert is given in the Figure below.

a. O(nlog,n)
b. 0(1)

c. O(n)

d. O(log,n)

void /Insert(T key)
{ if (IsMember(key)) return;
if (IsFull()) throw ListlException(“full”);
int i=++count;
for (;key<L[i-1];i--) L[/]=L[i-1];
L[]=key;

Figure 13. Function Insert

14. What is the time complexity of function Pop for a stack whose elements are stored in a
dynamically allocated arrayas shown in the Figure below?

a. 0(n)
b. O(nlog,n)

12

Programming Il CRN 20975

Test 3 Version 1

CMSC 2613 Spring 2017
c. 0(
d. O(log,n)

struct StackException{
StackException(char* m)
{ cout<<endl/<<”l amtheStackandlam “<<m<<“.”<<endl;
}

b

template <class 7>

class Stack {
int size; //Number of elements available
int tos; //Indexofthe element on top of the Stack
T*S; //Points to an array of type T containing the elements of the
Stack

public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaim storage used to implement the Stack
bool/sEmpty(void); //Isthe Stack empty?
bool/sFull(void); //1s the Stack full?
void Push(T d); //Insertavalue, v, on top ofthe Stack.
T Pop(void); //Remove and return the element on top ofthe Stack

b

Figure 14. class Stack

15. (31) Insert the strings "The" "cow" "is" "of" "the" "bovine" "ilk." into a stack, a queue, a
list, and a binary search tree. Now, print the list according to the following instructions
for each structure used. For the stack, pop and print elements from the stack. For the
gueue, dequeue and print elements from the queue. For the list, note that the list is
stored in ascending order and print the list accordingly. For the tree, print elements
using a post-order traversal. Matchthe lists printed for each structure against the lists in
Table 15. Select the data structure from which the corresponding correct ordered list of

strings is given.

Ordered list of strings Abstract datatype
“bovine” “ilk.” “of” “is” “cow” “the” “The” class List
“The” “cow” “is” “of” “the” “bovine” “ilk.” class Queue
“bovine” “cow” “ilk.” “is” “of” “The” “the” class Stack
“ilk.” “bovine” “the” “of” “is” “cow” “The” class Tree

Table 15. Ordered list of strings

a. Tree
b. List

c. Queue
d. Stack

13

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

16. Which of the following is a valid implementation of the function /sFull for a queue
whose individual elements are allocated dynamically as shown in the Figure below?

a. bool/sFull(void)
{ Element* e=new Element;
boolv=(bool)e;
if (e) deletee;
returny;

}

b. bool/sFullvoid){return count>=size;}

c. boolisFull(void)
{ Element* e=new Element;
boolv=(bool)(!e);
if (e) deletee;
returny;

}

d. bool/sFullvoid){return count<=0;}

14

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

struct QueueException{
QueueException(char* m)
{ cout<<endl/<<”l amtheQueueandlam” <<m << “.” << endl;

}
b
template <class 7>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value oftypeT stored in this element
Element(Element* n, T d):newer(n),data(d){}//Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(X} //Constructor
b
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill[Element* e){...} //Reclaims storage for all elements
public:
Queue(); //Constructor
~Queue(); //Destructor
bool/sEmpty(void)...} //1s the Queue empty?
bool/sFull(void){...} //1s the Queue full?
void Eng(T v){...} //Insertavalue, v, onthe Queue
T Deg(void){...} //Removetheoldestvalue on the Queue
int Count(void){...} //Return the number ofelements on the Queue

b

Figure 16. class Queue

17. What is the maximum number of comparisons required to find a key in a complete
binary tree having 9,754 nodes?

a. 12
b. 14
c. 11
d. 13

18. Which of the following is a valid implementation of function IsFull for a stack whose
elements are stored in a dynamically allocated array as shown in the Figure below?

bool/sFulllvoid)}{return tos>size;}
bool/sFull(void)}{return size>tos;}
bool/sFull(void){return size-1<=tos;}
bool/sFulllvoid)}{return tos>=size;}

o0 oo

15

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017
struct StackException{

StackException(char* m)
{ cout<<endl/<<”l amtheStackandlam“<<m<<“.” << endl;

}
b
template <class 7>
class Stack {
int size;
int tos;
T*S;
Stack
public:
Stack(int sz=100);
~Stack();
bool/sEmpty(void);
bool/sFull(void);
void Push(T d);
T Pop(void);

b

//Number of elements available
//Indexofthe element on top of the Stack
//Points to an array of type T containing the elements of the

//Constructor, initialize member data and allocate storage
//Destructor, reclaimstorage used to implement the Stack
//1s the Stack empty?

//1s the Stack full?

//Insertavalue, v, on top ofthe Stack.

//Remove and return the element on top ofthe Stack

Figure 18. class Stack

19. Which of the following is a valid implementation of the function Kill, for a list whose
individual elements are allocated dynamically as shown in the Figure below?

a. voidKill(Element* e)
{ if (e==largest)return;
Killle->larger);

deletee;

}

b. void Kill(Element* e)
{ if (e->key<MAX) return;
Killle->larger);

deletee;

}

c. voidKill(Element* e)
{ if (e!=largest)return;
Killle->larger);

deletee;

}

d. voidKill(Element* e)
{ if (e==largest){
Killle->larger);

deletee;

16

Programming Il CRN 20975 Test3 Version 1

CMSC 2613 Spring 2017
}
template <class T>
class List {
struct Element {
Element* smaller; //References the next smaller element
T key; //KeyoftypeT
Element* larger; //References the next larger element
Element(}{} //Default constructor

//Constructor assigning allmember data
Element(Element* s,T k,Element *I):smaller(s),key(k),larger(I{}

b
Element* largest; //Points to the sentinel
Element* cursor; //Points to the cursor
void Kill(Element* e); //Reclaims storage for all elements except the
sentinel
protected:
const TMAX; //Maximum element of type T stored in the sentinel
public:
List(T m); //Constructor, mis the maximum value of type T
~List(); //Destructor, reclaimstorage for the list
void Insert(T k); //Insert elementk
void Remove(T k); //Remove element k
void Print(ostream& o,char* title); //Print thelist, title={i1,i2,...,in}
void Scan(istream&i); //Storevalues found in streamin thelist
void First(void); //Position the cursor on the smallest element
void Next(void); //Position the cursoron the next larger element
bool/sEol(void); //1s the cursorjust past thelargest elementon the
list
T Member(void); //Return thevalue ofthe element on which the
cursor
//is positioned
bool/sMember(Tk); //1s member k an element of the list

L

Figure 19. class List

20. Which of the following is a valid implementation of the constructor, Queue, for a queue
whose elements are stored in a dynamically allocated array as shown in the Figure

below?

a. Queue(intsz=100):size(sz),count(0),oldest(-1),newest(size-1){Q=new T[sizel;}
b. Queue(int sz=100):size(sz),count(0),oldest(0),newest(-1){Q=new T[size];}

c. Queue(intsz=100):size(sz),count(0),oldest(0),newest(0){Q=new T[size];}

d. Queue(intsz=100):size(sz),count(0),oldest(-1),newest(0){Q=new T[size];}

17

Programming Il
CMSC 2613

CRN 20975 Test 3 Version 1
Spring 2017

struct QueueException{

QueueException(char* m)
{ cout<<endl/<<”l amtheQueueandlam” <<m << “.” << endl;

}
b
template <class 7>
class Queue {

int size;

int count;
™ Q;

int oldest;
int newest;

public:
Queue(intsz=100)...}
the

~Queue()...}

bool/sEmpty(void){...} //Isthe Queue empty?

bool/sFull(void){...}
void Enqg(T d){...}
T Deg(void){...}

b

//Number of available elements to store values on the Queue

//Number of elements stored on the Queue
//Points to a dynamically allocated array used to implement the

// Queue
//Indexofthe oldest element on the Queue
//Index ofthe newest element on the Queue

//Constructor, initialize member data and allocate storage for

//Queue

//Destructor, reclaimstorage

//1s the Queue full?
//Insertavalue, d, onthe Queue
//Remove and return the oldest value on the Queue

Figure 20. class Queue

21. What is the time complexity of the destructor, ~Queue, for a queue whose elements are
stored in a dynamically allocated arrayas shown in the Figure below?

a. 0(n)

b. 0(1)

c. O(log,n)
d. O(nlog,n)

18

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

struct QueueException{
QueueException(char* m)
{ cout<<endl/<<”l amtheQueueandlam” <<m << “.” << endl;
}

b

template <class 7>

class Queue {

int size; //Number of available elements to store values on the Queue

int count; //Number of elements stored on the Queue

™ Q; //Points to a dynamically allocated array used to implement the
// Queue

int oldest; //Indexofthe oldest element on the Queue

int newest; //Index ofthe newest element on the Queue

public:

Queue(intsz=100){...} //Constructor, initialize member data and allocate storage for

the
//Queue

~Queue()...} //Destructor, reclaimstorage

bool/sEmpty(void){...} //Isthe Queue empty?

bool/sFullivoid){...} //IstheQueuefull?

void Eng(T d){...} //Insertavalue, d, onthe Queue

T Deg(void){...} //Remove and return the oldest value on the Queue

b

Figure 21. class Queue

22. What is the time complexity of function Insert for a list whose elementsare individually
stored in dynamically allocated elements as shown in the Figure below?

a. O(nlog,n)
b. O(log,n)
c. 0D

d O0m)

19

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

template <class 7>

class List {
struct Element{
Element* smaller; //References the next smaller element
T key; //KeyoftypeT
Element* larger; //References the next larger element
Element(X} //Default constructor

//Constructor assigning allmember data
Element(Element* s, T k,Element *I):smaller(s),key(k),larger(I{}

b
Element* largest; //Points to the sentinel
Element* cursor; //Points to the cursor
void Kill([Element* e); //Reclaims storage for all elements except the
sentinel
protected:
const TMAX; //Maximum element of type T stored in the sentinel
public:
List(T m); //Constructor, mis the maximum value of typeT
~List(); //Destructor, reclaimstorage for the list
void Insert(T k); //Insert elementk
void Remove(T k); //Remove element k
void Print(ostream& o,char* title); [/Print thelist, title={i1,i2,...,in}
void Scan(istream&di); //Storevalues found in streamin the list
void First(void); //Position the cursor on the smallest element
void Next(void); //Position the cursoron the next larger element
bool/sEol(void); //1sthe cursorjust pastthelargest element on the
list
T Member(void); //Return thevalue ofthe element on which the
cursor
//is positioned
bool/sMember(Tk); //1s member k an element of the list

b

Figure 22. class List

23. Which of the following is a valid implementation of function IsEmptyfor a stack whose
elements are stored in a dynamically allocated array as shown in the Figure below?

bool/sEmpty(void){returntos>0;}

bool/sEmpty(void){return-1<=tos;}
bool/sEmpty(void){return0>=tos;}
bool/sEmpty(void){return-1>=tos;}

oo oo

20

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

struct StackException{
StackException(char* m)
{ cout<<endl/<<”l amtheStackandlam“<<m<<“.” << endl;

}
b
template <class 7>
class Stack {

int size; //Number of elements available
int tos; //Indexofthe element on top of the Stack
T*S; //Points to an array of type T containing the elements of the
Stack
public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaimstorage used to implement the Stack
bool/sEmpty(void); //Isthe Stack empty?
bool/sFull(void); //1s the Stack full?
void Push(T d); //Insertavalue, v, on top ofthe Stack.
T Pop(void); //Remove and return the element on top ofthe Stack

b

Figure 23. class Stack

24. Which of the following is a valid implementation of the constructor, List, for a list whose
individual elements are allocated dynamically as shown in the Figure below?

a. List(T m):MAX(m)
{ Element* n=new Element;
n->key=m;
n=cursor;
n=largest; n=n->smaller;
n=n->larger;

}

b. List(T m):MAX(m)
{ Element* n=new Element(0,MAX,0);
n=cursor=largest=n->smaller=n->larger;

}

c. List(T m):MAX(m)
{ Element* n=new Element(0,MAX,0);
cursor=largest=n->smaller=n->larger=n;

}

d. List(T m):MAX(m)
{ MAX=m;Element* n=new Element;
n->key=mi;cursor=Ilargest=n->smaller=n->larger=n;

}

21

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

template <class T>

class List {
struct Element {
Element* smaller; //References the next smaller element
T key; //KeyoftypeT
Element* larger; //References the next larger element
Element()X} //Default constructor

//Constructor assigning allmember data
Element(Element* s, T k,Element *I):smaller(s),key(k),larger(/){}

b
Element* largest; //Points to the sentinel
Element* cursor; //Points to the cursor
void Kill([Element* e); //Reclaims storage for all elements except the
sentinel
protected:
const TMAX; //Maximum element of type T stored in the sentinel
public:
List(T m); //Constructor, mis the maximum value of type T
~List(); //Destructor, reclaimstorage for the list
void Insert(T k); //Insert element k
void Remove(Tk); //Remove element k
void Print(ostream& o,char* title); //Print thelist, title={il,i2,...,in}
void Scan(istream&.i); //Storevalues found in streamin the list
void First(void); //Position the cursor on the smallest element
void Next(void); //Position the cursoron the next larger element
bool/sEol(void); //1sthe cursorjust pastthelargest element on the
list
T Member(void); //Return thevalue ofthe element on which the
cursor
//is positioned
bool/sMember(Tk); //1s member k an element of the list

b

Figure 24. class List

25. Which of the following is a valid implementation of the function IsEmpty, for a queue
whose elements are stored in a dynamically allocated arrayas shown in the Figure
below?

a. boollsEmpty(void){return0<=count;}
b. bool/sEmpty(void){returncount!=0;}
c. boollsEmpty(void){returncount>=0;}
d. bool/sEmpty(void){return0>=count;}

22

Programming Il
CMSC 2613

CRN 20975 Test 3 Version 1
Spring 2017

struct QueueException{

QueueException(char* m)
{ cout<<endi/<x<”lamthe Queueandlam“ << m << “.” << endl;

}
b
template <class 7>
class Queue {

int size;

int count;
™ Q;

int oldest;
int newest;

public:
Queue(intsz=100)...}
the

~Queue()...}

bool/sEmpty(void){...} //Isthe Queue empty?

bool/sFull(void){...}
void Enqg(T d){...}
T Deg(void){...}

b

//Number of available elements to store values on the Queue

//Number of elements stored on the Queue
//Points to a dynamically allocated array used to implement the

// Queue
//Indexofthe oldest element on the Queue
//Index ofthe newest element on the Queue

//Constructor, initialize member data and allocate storage for

//Queue

//Destructor, reclaimstorage

//1s the Queue full?
//Insertavalue, d, onthe Queue
//Remove and return the oldest value on the Queue

Figure 25. class Queue

26. Which of the following sequences is an in-order traversal of the binary searchtree in the

Figure below?

a.

b. AIFQTM
c. AFIMQT
d MFAITQ

none of the other alternatives

Figure 26. Binary tree

23

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

27. What is the time complexity of function Kill for a stack whose individual elements are
allocated dynamically as shown in the Figure below?

a. 0(n)

b. 0(1)

c. O(log,n)

d. O(nlog,n)
struct StackException{

StackException(char* m)
{ cout<<end/<<”l amtheStackandlam “ << m << “.” << endl;
}

b

template <class 7>

class Stack {

struct Element {
Element* prev; //Points to the previous element on the
Stack
T data; //Dataof type Tstored in this element
Element(Element* p, T d):prev(p),data(d}{} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(}{} //Constructor, initialize no member data
b
Element* tos; //Points to the element on top ofthe Stack
void Kill[Element* e) {...} //Reclaims storagefor all elements on the
//Stack
public:
Stack():...{...} //Constructor
~Stack(}{} //Destructor
bool/sEmpty(void)...} //1s the Stack empty?
bool/sFull(void){...} //1s the Stack full?
void Push(T d) {...} //Push avalue, d, on the Stack
T Pop(void){...} //Pop a value from the Stack

b

Figure 27. class Stack

24

Programming Il
CMSC 2613

CRN 20975

Test 3 Version 1
Spring 2017

28. Which of the following is a valid implementation of the function Insert, for a list whose
individual elements are allocated dynamically as shown in the Figure below?

a. void/nsert(Tk)

{

}

Element* e=largest->larger;

while (k > e->key) e=e->larger;

if (k == e->key) return;

Element* n=new Element(e->smaller,k,e);
e->smaller->larger=n;

e->smaller=n;

b. void /nsert(Tk)

{

}

Element* e=largest->larger;

while (k > e->key) e=e->larger;

if (k == e->key) return;

Element* n=new Element(e, k,e->larger);
e->smaller->larger=n;

e->smaller=n;

c. void /nsert(Tk)

{

}

Element* e=largest->larger;

while (k > e->key) e=e->larger;

if (k == e->key) return;

Element* n=new Element(e->smaller,k,e);
e->smaller=n;

e->smaller->larger=n;

d. void/nsert(Tk)

{

Element* e=largest->larger;

while (k < e->key) e=e->larger;

if (k == e->key) return;

Element* n=new Element(e->smaller, k,e);
e->smaller->larger=n;

e->smaller=n;

25

Programming Il
CMSC 2613

CRN 20975 Test 3 Version 1
Spring 2017

template <class 7>
class List {
struct Element{

b

b

Element* smaller;
T key;
Element* larger;

Element(Element* s,T k,Element *I):smaller(s),key(k),larger(I{}

Element* largest;
Element* cursor;
void Kill([Element* e);
sentinel

protected:

const TMAX;

public:
List(T m);

~List();

void Insert(T k);
void Remove(T k);

void Print(ostream& o,char* title);
void Scan(istream&.i);

void First(void);
void Next(void);
bool/sEol(void);
list
T Member(void);
cursor

bool/sMember(Tk);

//References the next smaller element
//KeyoftypeT
//References the next larger element

//Points to the sentinel
//Points to the cursor
//Reclaims storage for all elements except the

//Maximum element of type T stored in the sentinel

//Constructor, mis the maximum value of type T
//Destructor, reclaimstorage for the list

//Insert elementk

//Remove element k

//Print thelist, title={i1,i2,...,in}

//Storevalues found in streamin the list
//Position the cursor on the smallest element
//Position the cursoron the next larger element
//1s the cursorjust pastthelargest element on the

//Return thevalue ofthe element on which the

//is positioned
//1s member k an element of the list

Figure 28. class List

29. What is the time complexity of the destructor, ~List, for a list whose individual elements
are allocated dynamically as shown in the Figure below?

o0 oo

0(1)
O(nlog,n)
o(n)
O(log, n)

26

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

template <class 7>

class List {
struct Element{
Element* smaller; //References the next smaller element
T key; //KeyoftypeT
Element* larger; //References the next larger element
Element(X} //Default constructor

//Constructor assigning allmember data
Element(Element* s, T k,Element *I):smaller(s),key(k),larger(I{}

b
Element* largest; //Points to the sentinel
Element* cursor; //Points to the cursor
void Kill([Element* e); //Reclaims storage for all elements except the
sentinel
protected:
const TMAX; //Maximum element of type T stored in the sentinel
public:
List(T m); //Constructor, mis the maximum value of typeT
~List(); //Destructor, reclaimstorage for the list
void Insert(T k); //Insert element k
void Remove(T k); //Remove element k
void Print(ostream& o,char* title); //Print thelist, title={i1,i2,...,in}
void Scan(istream&di); //Storevalues found in streamin the list
void First(void); //Position the cursor on the smallest element
void Next(void); //Position the cursoron the next larger element
bool/sEol(void); //1sthe cursorjust pastthelargest element on the
list
T Member(void); //Return thevalue ofthe element on which the
cursor
//is positioned
bool/sMember(Tk); //1s member k an element of the list

b

Figure 29. class List

30. Which of the following is a valid implementation of function Push for a stack whose
individual elements are allocated dynamically as shown in the Figure below?

a. void Push(T d)
{ if (IsFull()) throw StackException("full");
Element* e=new Element(tos,d);

}

27

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

b. void Push(T d)

{ if (IsFull()) throw StackException("full");
Element* e=new Element(d);
e->prev=tos;
tos=e;

}

c. void Push(T d)
{ if (IsFull()) throw StackException("full");
Element* e=new Element;
tos=e;
e->prev=tos;
e->data=d;

}

d. void Push(T d)
{ if (IsFull()) throw StackException("full");
Element* e=new Element(d,tos);
tos=e;

}

struct StackException{
StackException(char* m)
{ cout<<end/<<”l amtheStackandlam “<<m << “.” << endl,

}
b
template <class 7>
class Stack {

struct Element {
Element* prev; //Points to the previous element on the Stack
T data; //Data of type T stored in this element
Element(Element™* p,T d):prev(p),data(d){} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(X} //Constructor, initialize no member data
b
Element* tos; //Points to the element on top ofthe Stack
void Kill([Element* e) {...} //Reclaims storage for all elements on the Stack
public:
Stack():...{...} //Constructor
~Stack(}{} //Destructor
bool/sEmpty(void)...} //1s the Stack empty?
bool/sFullvoid){...} //1s the Stack full?
void Push(T d) {...} //Push avalue, d, on the Stack
T Pop(void){...} //Pop a value from the Stack

L

Figure 30. class Stack

28

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

31. Which of the following is a valid implementation of the constructor, Stack, for a stack
whose individual elements are allocated dynamically as shown in the Figure below?

a. Stack():tos(*NULL){}

b. Stack():tos(0}}

c. Stack():tos('0){}

d. Stack():tos(1.602e-19){}
struct StackException{

StackException(char* m)
{ cout<<endl<<”lamtheStackandlam “ << m<<“.” << endl,
}

b

template <class 7>

class Stack {

struct Element{
Element* prev; //Points to the previous element on the Stack
T data; //Data of type T stored in this element
Element(Element™* p,T d):prev(p),data(d){} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(X} //Constructor, initialize no member data
b
Element* tos; //Points to the element on top ofthe Stack
void Kill([Element* e) {...} //Reclaims storage for all elements on the Stack
public:
Stack():...{...} //Constructor
~Stack(}{} //Destructor
bool/sEmpty(void)...} //1s the Stack empty?
bool/sFullivoid){...} //1s the Stack full?
void Push(T d) {...} //Push avalue, d, on the Stack
T Pop(void){...} //Pop a value from the Stack

L

Figure 31. class Stack

32. Which of the following is a valid implementation of the function Eng for a queue whose
individual elements are allocated dynamically as shown in the Figure below?

a. void Eng(T d)
{ if (IsFull()) throw QueueException(“full”’);
Element* e=new Element(d);
if (count==0) oldest=e; else newest->newer=e;
newest=e,;
count++;
}
b. wvoid Eng(T d)
{ if (IsFull()) throw QueueException(“full”);

29

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

Element* e=new Element(d);
if (IsEmpty()) {oldest=e;} else {newest->newer=e; newest=e;}
count++;
}
c. void Eng(T d)
{ if (IsFull()) throw QueueException(“full”);
Element* e=new Element(d);
if (!/sFull()) oldest=e; else newest->newer=e;
newest=e;
count++;
}
d. void Eng(T d)
{ if (IsFull()) throw QueueException(“full”);
Element* e=new Element(d);
newest=e;
if (IsEmpty()) oldest=e; else newest->newer=e;
count++;

30

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

struct QueueException{
QueueException(char* m)
{ cout<<endl/<<”l amtheQueueandlam” <<m << “.” << endl;

}
b
template <class 7>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value oftypeT stored in this element
Element(Element* n, T d):newer(n),data(d){}//Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(X{} //Constructor
b
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill[Element* e){...} //Reclaims storage for all elements
public:
Queue(); //Constructor
~Queue(); //Destructor
bool/sEmpty(void)...} //1s the Queue empty?
bool/sFullvoid){...} //1s the Queue full?
void Eng(T v){...} //Insertavalue, v, onthe Queue
T Deg(void){...} //Removetheoldestvalueonthe Queue
int Count(void){...} //Return the number of elements on the
Queue

L

Figure 32. class Queue

33. What is the maximum number of comparisons required to find a key in a binary tree
having 191 nodes and whose heightis equal to 12?

a. 11
b. 14
c. 13
d 12

31

Programming Il CRN 20975

CMSC 2613

Test 3 Version 1
Spring 2017

34. Which of the following is a valid implementation of function Pop for a stack whose
elements are stored in a dynamically allocated array as shown in the Figure below?

T Pop(void)

{ if (IsEmpty()) throw StackException(“empty”);
return S[tos];
--tos;

}

T Pop(void)

{ if (IsEmpty()) throw StackException(“empty”);
T v=S[tos];
--tos;
returny;

}

T Pop(void)

{ if (IsEmpty()) throw StackException(“empty”);
return S[--tos];

}

T Pop(void)

{ if (IsEmpty()) throw StackException(“empty”);
return S[tos];
tos--;

}

32

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

struct StackException{
StackException(char* m)
{ cout<<endl/<<”l amtheStackandlam “<<m<<“.” << endl;
}

b

template <class 7>

class Stack {

int size; //Number of elements available
int tos; //Indexofthe element on top of the Stack
T*S; //Points to an array of type T containing the elements ofthe
Stack
public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaimstorage used to implement the Stack
bool/sEmpty(void); //Isthe Stack empty?
bool/sFull(void); //\s the Stack full?
void Push(T d); //Insertavalue, v, on top ofthe Stack.
T Pop(void); //Remove and return the element on top of the Stack

b

Figure 34. class Stack

35. What is the time complexity of the destructor, ~Queue, for a queue whose individual
elements are allocated dynamically as shown in the Figure below?

a. O(log,n)
b. 0(1)

c. O(nlog,n)
d 0m)

33

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

struct QueueException{
QueueException(char* m)
{ cout<<endl/<<”l amtheQueueandlam®” <<m << “.” << endl;

}
b
template <class 7>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value oftypeT stored in this element
Element(Element* n,T d):newer(n),data(d){}//Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(){} //Constructor
b
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill([Element* e){...} //Reclaims storage for all elements
public:
Queue(); //Constructor
~Queue(); //Destructor
bool/sEmpty(void)...} //1s the Queue empty?
bool/sFull(void){...} //1s the Queue full?
void Eng(T v){...} //Insertavalue, v, onthe Queue
T Deg(void){...} //Removetheoldestvalue onthe Queue
int Count(void){...} //Return the number of elements on the Queue

b

Figure 35. class Queue

36. Select the expressions in infix notation equivalent to the expression tree in the Figure
below.

1-2/3*4*5+6/7
(1-2)/3*(4*5+6/7)
*/.123+*45/67
12-3/45%67/+*

o0 oo

Figure 36. An expression tree

34

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

37. What is the time complexity of function Push for a stack whose individual elements are
allocated dynamically as shown in the Figure below?

a. O(log,n)
b. 0(1)
c. O(nlog,n)
d O0m)

struct StackException{

StackException(char* m)
{ cout<<end/<<”l amtheStackandlam “ << m << “.” << endl;
}

b

template <class 7>

class Stack {

struct Element {
Element* prev; //Points to the previous element on the Stack
T data; //Dataof type Tstored in this element
Element(Element* p,T d):prev(p),data(d){} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(X} //Constructor, initialize no member data
b
Element* tos; //Points to the element on top ofthe Stack
void Kill([Element* e) {...} //Reclaims storage for all elements on the Stack
public:
Stack():...{...} //Constructor
~Stack(}{} //Destructor
bool/sEmpty(void)...} //1s the Stack empty?
bool/sFullivoid){...} //1s the Stack full?
void Push(T d) {...} //Push avalue, d, on the Stack
T Pop(void){...} //Pop a value from the Stack

b

Figure 37. class Stack

35

Programming Il

CMSC 2613

CRN 20975

Test 3 Version 1
Spring 2017

38. Which of the following is a valid implementation of function Kill for a stack whose
elements are individually stored in dynamically allocated elements as shown in the
Figure below?

Q

void Kill[Element* e)
{ while(e) {
e=e->prev;

Element* p=e;

delete p;

}

void Kill([Element* e)
{ while(e) {

Element* p=e;

e=e->prev;
deletee;

}

void Kill([Element* e)
{ if (e) Killle->prev);
deletee;

}

void Kill([Element* e)

{ if(le)return;
Killle->prev);
deletee;

36

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

struct StackException{
StackException(char* m)
{ cout<<endl/<<”l amtheStackandlam“<<m<<“.” << endl;
}

b

template <class 7>

class Stack {

struct Element {
Element* prev; //Points to the previous element on the Stack
T data; //Dataof type Tstored in this element
Element(Element* p, T d):prev(p),data(d}{} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element (X} //Constructor, initialize no member data
b
Element* tos; //Points to the element on top ofthe Stack
void Kill[Element* e){...} //Reclaims storage for all elements on the Stack
public:
Stack():...{...} //Constructor
~Stack(}{} //Destructor
bool/sEmpty(void)...} //1s the Stack empty?
bool/sFull(void){...} //1s the Stack full?
void Push(T d) {...} //Push avalue, d, on the Stack
T Pop(void){...} //Pop a value from the Stack

b

Figure 38. class Stack

39. Which of the following sequences is a pre-order traversal of the binary search treein the
Figure below?

a. MFAITQ
b. AIFQTM
c. none of the other alternatives
d AFIMQT

Figure 39. Binary tree

37

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

40. Which of the following sequences is a post-order traversal of the binary search treein
the Figure below?

a. AIFQTM™M
b. AFIMQT
c. MFAITQ
d. none of the other alternatives

Figure 40. Binary tree

41. What is the time complexity function of function given in Figure below? You may
complete the table provided to compute your answer.

a. T(n)=%n2+%n+3
b. Tm)=3n%2+5n+3
c T(n)=%n2+§n+3
d T(n)=3n’2+11n+3

int sum=0;
for (int a=0;a<n;a++)
for (int b=0;b<a;b++)
sum++;

Figure 41. Code Fragment

38

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017
Line | Code Cost

1 int sum=0;

2 int a=0;

3 | while (a<n){

4 int b=0;

5 while (b<a) {

6 SUM++;

7 b++;

8 }

9 a++;

10 |}

42. What is the smallest integer value n, that makes T(n) = 0(n?)where T(n) = 3n?+

5n+3andc=4?

oo oo
U1 0 O

43. What is the time complexity function of function given in Figure below? You may

complete the table provided to compute your answer.

n=0,T(0)=1
a. T(n) = {n > O,T(n) = 310g2(n)+ 1
n=0T0)=1
b. T(n)= {n >0,T(n) =30og,(n)+1) +1
T()_{ n:O,T(O):]-
¢ TM=10>0,7(m) = 3(log 5 (n) + 1)

39

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

n=0T0)=1

d T(n)= {n > 0,T(n) = 3log,(n)

[while (n>0) n=n/2;

Figure 41. Code Fragment

Line | Code Cost
1 | while (n>0){
2 n=n/2;
3 |1}
44, What is the smallest integer value n, that makes T (n) = 0(log,(n)) where T(n) =
3log,(n) + 1andc = 4?
a. 2
b. 4
c. 5
d 3
45. In what order do the keys Anna, Beatrice, Colette, Dee, Edith, Felicia, and Grace need to
be inserted into a binary tree to guarantee that the tree has a height no greater than
two (2)?
a. Anna, Beatrice, Colette, Dee, Edith, Felicia, Grace
b. Beatrice, Anna, Felicia, Colette, Edith, Grace, Dee
c. Grace, Felicia, Edith, Dee, Colette, Anna
d. Dee, Beatrice, Felicia, Anna, Colette, Edith, Grace
46. What is the best class to implement a page replacement policy such that the oldest page

is replaced?

a. Queue
b. Ordered list
c. Stack
d. Heap

40

Programming Il CRN 20975 Test3 Version 1
CMSC 2613 Spring 2017

47. How many comparisons are required to insert the integer 16 into a list implemented by
allocating one element for every integer, having links to both the smaller and larger
elements, having a sentinel element containing an integer larger than any on the list,
connecting all the links in both directions so that a circle is maintained? The list
contains the following integer 1, 2, 4, 8, 32, and 64 excluding the sentinel element.

o 0O T w
a wu b

48. How many comparisons are required to insert the integer 20 into a binary tree of
minimum height that contains the following integers: 4, 8, 12, 16, 24, and 28?

o0 oo
AWERLN

49. What is the maximum number of comparisons required to insert a key in a binary tree of
minimum height that has 729 keys in the tree?

a. 10
b. 8
c. 11
d 9

50. What is the length of the longest path from the root to a leaf is a tree containing 729
keys where each node canhave up to four (4) children and the tree has the minimum
height?

o 0 T w
w v b~ O

41

