
Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 1

1. Print your name on your scantron in the space labeled NAME.
2. Print CMSC 2613 in the space labeled SUBJECT.
3. Print the test number and version, T3/V1, in the space labeled TEST NO.
4. Print the date, 5-5-2017, in the space labeled DATE.
5. Print your CRN number, 20975, in the space labeled PERIOD.
6. This is a closed-book examination. No reference materials are permitted. No notes are

permitted.
7. You may not consult your neighbors, colleagues, or fellow students to answer the questions

on this test.
8. Cellular phones are prohibited. The possessor of a cellular phone will receive a zero (0) if the

phone rings or is visible during the test.
9. You may use your personal calculator on this test. You are prohibited from loaning your

calculator or borrowing a calculator from another person enrolled in this course.
10. Mark the best selection that satisfies the question. If selection b is better that selections a or

d, then mark selection b. Mark only one selection.
11. Darken your selections completely. Make a heavy black mark that completely fills your

selection.
12. Answer all 50 questions.
13. Record your answers on SCANTRON form 882-E (It is green!).
14. When you have completed the test, place your scantron, face up, between pages 2 and 3 of

your questionnaire and submit both the questionnaire and your scantron to your instructor.

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 2

1. What is the time complexity of function Deq for a queue whose elements are
individually stored in dynamically allocated elements as shown in the Figure below?

a. 𝑂𝑂(𝑛𝑛)
b. 𝑂𝑂(1)
c. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)
d. 𝑂𝑂(log2 𝑛𝑛)

struct QueueException{

QueueException(char* m)
{ cout<<endl <<”I am the Queue and I am “ << m << “.” << endl;
}

};
template <class T>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value of type T stored in this element
Element(Element* n,T d):newer(n),data(d){}//Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(){} //Constructor

};
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill(Element* e){…} //Reclaims storage for all elements

public:
Queue(); //Constructor
~Queue(); //Destructor
bool IsEmpty(void){…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T v) {…} //Insert a value, v, on the Queue
T Deq(void) {…} //Remove the oldest value on the Queue
int Count(void) {…} //Return the number of elements on the
Queue

};

Figure 1. class Queue

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 3

2. What is the time complexity of function Insert from class Heap shown in the Figure
below?

a. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)
b. 𝑂𝑂(log2 𝑛𝑛)
c. 𝑂𝑂(1)
d. 𝑂𝑂(𝑛𝑛)

void Insert(int v)
{ if (IsFull()) throw HeapFullException();

int a=++count;
while(H[a/2]>v) {

H[a]=H[a/2];
a/=2;

}
H[a] = v;

}
Figure 2. Function Insert

3. What is the time complexity of member function Sort in class Heap as shown in the

Figure below?

a. 𝑂𝑂(1)
b. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)
c. 𝑂𝑂(𝑛𝑛)
d. 𝑂𝑂(log2 𝑛𝑛)

void Sort(void)
{ int* J=new int[size];

J[0]=INT_MIN;
int a=1;
while (!IsEmpty()) {

int v=Remove();
J[a++]=v;

}
if (H) delete[] H;
H=J;
count=a-1;

}

Figure 3. Function Sort

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 4

4. Which of the following is a valid implementation of function IsFull for a stack whose
individual elements are allocated dynamically as shown in the Figure below?

a. bool IsFull(void)

{ Element* e=new Element;
bool v=(bool)(!e);
if (e) delete e;
return v;

}
b. bool IsFull(void)

{ Element* e=new Element;
bool v=(bool)(e);
if (e) delete e;
return v;

}
c. bool IsFull(void){return tos!=0;}
d. bool IsFull(void){return true;}

struct StackException{

StackException(char* m)
{ cout<<endl <<”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

struct Element {
Element* prev; //Points to the previous element on the
Stack
T data; //Data of type T stored in this element
Element(Element* p,T d):prev(p),data(d){} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(){} //Constructor, initialize no member data

};
Element* tos; //Points to the element on top of the Stack
void Kill(Element* e) {…} //Reclaims storage for all elements on
the

//Stack
public:

Stack():…{…} //Constructor
~Stack(){}
bool IsEmpty(void){…}
bool IsFull(void) {…}
void Push(T d) {…}
T Pop(void) {…}

};

Figure 4. class Stack

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 5

5. Which of the following is a valid implementation of function Push for a stack whose
elements are stored in a dynamically allocated array as shown in the Figure below?

a. void Push(T v){if (IsFull()) throw StackException(“full”);S[tos]=v;tos++;}
b. void Push(T v){if (IsFull()) throw StackException(“full”);S[++tos]=v;}
c. void Push(T v){if (IsFull()) throw StackException(“full”);S[tos]=v;++tos;}
d. void Push(T v){if (IsFull()) throw StackException(“full”);S[tos++]=v;}

struct StackException{

StackException(char* m)
{ cout<<endl <<”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

int size; //Number of elements available
int tos; //Index of the element on top of the Stack
T* S; //Points to an array of type T containing the elements of the
Stack

public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaim storage used to implement the Stack
bool IsEmpty(voiv); //Is the Stack empty?
bool IsFull(void); //Is the Stack full?
void Push(T v); //Insert a value, v, on top of the Stack.
T Pop(void); //Remove and return the element on top of the Stack

};

Figure 5. class Stack

6. Which of the following is a valid implementation of the constructor, Queue, for a queue
whose elements are individually stored in dynamically allocated elements as shown in
the Figure below?

a. Queue(){count=0;oldest=newest=0;}
b. Queue():count(0),oldest(nil),newest(nil){}
c. Queue():count(0){Element* e=new Element; oldest=newest=e; e->newer=e;}
d. Queue():count(0){newest=oldest;}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 6

struct QueueException{
QueueException(char* m)
{ cout<<endl <<”I am the Queue and I am “ << m << “.” << endl;
}

};
template <class T>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value of type T stored in this element
Element(Element* n,T d):newer(n),data(d){}//Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(){} //Constructor

};
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill(Element* e){…} //Reclaims storage for all elements

public:
Queue(); //Constructor
~Queue(); //Destructor
bool IsEmpty(void){…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T v) {…} //Insert a value, v, on the Queue
T Deq(void) {…} //Remove the oldest value on the Queue
int Count(void) {…} //Return the number of elements on the
Queue

};

Figure 6. class Queue

7. Select the expressions in suffix notation equivalent to the expression tree in the Figure
below.

a. (1-2)/3*4*5+6/7
b. 1 2 – 3 / 4 5 * 6 7 / + *
c. 1-2/3*4*5+6/7
d. * / - 1 2 3 + * 4 5 / 6 7

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 7

71 2

3

4 5 6

-

/

*

*

+

/

Figure 7. An expression tree

8. What is the time complexity of function Enq for a queue whose elements are stored in a
dynamically allocated array as shown in the Figure below?

a. 𝑂𝑂(1)
b. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)
c. 𝑂𝑂(𝑛𝑛)
d. 𝑂𝑂(log2 𝑛𝑛)

struct QueueException{
QueueException(char* m)
{ cout<<endl <<”I am the Queue and I am “ << m << “.” << endl;
}

};
template <class T>
class Queue {

int size; //Number of available elements to store values on the Queue

int count; //Number of elements stored on the Queue
T* Q; //Points to a dynamically allocated array used to implement the

// Queue
int oldest; //Index of the oldest element on the Queue
int newest; //Index of the newest element on the Queue

public:
Queue(int sz=100){…} //Constructor, initialize member data and allocate storage for
the

//Queue
~Queue(){…} //Destructor, reclaim storage
bool IsEmpty(void) {…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T d) {…} //Insert a value, d, on the Queue
T Deq(void){…} //Remove and return the oldest value on the Queue

};

Figure 8. class Queue

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 8

9. Which of the following is a valid implementation of the function Kill for a queue whose
individual elements are allocated dynamically as shown in the Figure below?

a. void Kill(Element* e)

{ if (e) {
delete e;
Kill(e->newer);

}
}

b. void Kill(Element* e)
{ if (e) return;

Kill(e->newer);
delete e;

}
c. void Kill(Element* e)

{ if (!e){
delete e;
Kill(e->newer);

}
}

d. void Kill(Element* e)
{ if (!e) return;

Kill(e->newer);
delete e;

}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 9

struct QueueException{
QueueException(char* m)
{ cout<<endl <<”I am the Queue and I am “ << m << “.” << endl;
}

};
template <class T>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value of type T stored in this element
Element(Element* n,T d):newer(n),data(d){} //Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(){} //Constructor

};
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill(Element* e){…} //Reclaims storage for all elements

public:
Queue(); //Constructor
~Queue(); //Destructor
bool IsEmpty(void){…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T v) {…} //Insert a value, v, on the Queue
T Deq(void) {…} //Remove the oldest value on the Queue
int Count(void) {…} //Return the number of elements on the
Queue

};
Figure 9. class Queue

10. What is the time complexity of function Index for a list whose elements are stored in a

dynamically allocated array? Function Index is given in Figure below.

a. 𝑂𝑂(𝑛𝑛)
b. 𝑂𝑂(log2 𝑛𝑛)
c. 𝑂𝑂(1)
d. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 10

int Index(T key)
{ int lo=1,hi=count;

while (lo<=hi) {
int m=(lo+hi)/2;
if (key==L[m]) return m;
if (key<L[m]) hi=m-1; else lo=m+1;

}
return 0;

}
Figure 10. Function Index

11. Which of the following is a valid implementation of the constructor, Stack, for a stack

whose elements are stored in a dynamically allocated array as shown in the Figure
below?

a. Stack(int sz=100):size(sz),tos(0){S=new T[sz];}
b. Stack(int size=100):size(sz),tos(-1){S=new T[sz];}
c. Stack(int size=100):size(100),tos(0){S=new T[size];}
d. Stack(int sz=100){size=sz;tos=-1;S=new T[size];}

struct StackException{

StackException(char* m)
{ cout<<endl <<”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

int size; //Number of elements available
int tos; //Index of the element on top of the Stack
T* S; //Points to an array of type T containing the elements of the
Stack

public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaim storage used to implement the Stack
bool IsEmpty(void); //Is the Stack empty?
bool IsFull(void); //Is the Stack full?
void Push(T d); //Insert a value, v, on top of the Stack.
T Pop(void); //Remove and return the element on top of the Stack

};
Figure 11. class Stack

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 11

12. Which of the following is a valid implementation of the function Deq, for a queue whose
elements are stored in a dynamically allocated array as shown in the Figure below?

a. T Deq(void)

{ if (IsEmpty()) throw QueueException("empty");
oldest++;
T v=Q[oldest];
count--;
return v;

}

b. T Deq(void)
{ if (IsEmpty()) throw QueueException("empty");

T v=Q[(oldest+1)%size];
count--;
return v;

}

c. T Deq(void)
{ if (IsEmpty()) throw QueueException("empty");

oldest=(oldest+1)%size;
T v=Q[oldest];
count--;
return v;

}

d. T Deq(void)
{ if (IsEmpty()) throw QueueException("empty");

T v=Q[oldest];
oldest=(oldest+1)%size;
count--;
return v;

}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 12

struct QueueException{
QueueException(char* m)
{ cout<<endl <<”I am the Queue and I am “ << m << “.”<< endl;
}

};
template <class T>
class Queue {

int size; //Number of available elements to store values on the Queue

int count; //Number of elements stored on the Queue
T* Q; //Points to a dynamically allocated array used to implement the

// Queue
int oldest; //Index of the oldest element on the Queue
int newest; //Index of the newest element on the Queue

public:
Queue(int sz=100){…} //Constructor, initialize member data and allocate storage for
the

//Queue
~Queue(){…} //Destructor, reclaim storage
bool IsEmpty(void) {…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T d) {…} //Insert a value, d, on the Queue
T Deq(void){…} //Remove and return the oldest value on the Queue

};
Figure 12. class Queue

13. What is the time complexity of function Insert for a list whose elements are stored in a

dynamically allocated array? Function Insert is given in the Figure below.

a. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)
b. 𝑂𝑂(1)
c. 𝑂𝑂(𝑛𝑛)
d. 𝑂𝑂(log2 𝑛𝑛)

void Insert(T key)
{ if (IsMember(key)) return;

if (IsFull()) throw ListlException(“full”);
int i=++count;
for (;key<L[i-1];i--) L[i]=L[i-1];
L[i]=key;

}
Figure 13. Function Insert

14. What is the time complexity of function Pop for a stack whose elements are stored in a

dynamically allocated array as shown in the Figure below?

a. 𝑂𝑂(𝑛𝑛)
b. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 13

c. 𝑂𝑂(1)
d. 𝑂𝑂(log2 𝑛𝑛)

struct StackException{

StackException(char* m)
{ cout<<endl <<”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

int size; //Number of elements available
int tos; //Index of the element on top of the Stack
T* S; //Points to an array of type T containing the elements of the
Stack

public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaim storage used to implement the Stack
bool IsEmpty(void); //Is the Stack empty?
bool IsFull(void); //Is the Stack full?
void Push(T d); //Insert a value, v, on top of the Stack.
T Pop(void); //Remove and return the element on top of the Stack

};
Figure 14. class Stack

15. (31) Insert the strings "The" "cow" "is" "of" "the" "bovine" "ilk." into a stack, a queue, a

list, and a binary search tree. Now, print the list according to the following instructions
for each structure used. For the stack, pop and print elements from the stack. For the
queue, dequeue and print elements from the queue. For the list, note that the list is
stored in ascending order and print the list accordingly. For the tree, print elements
using a post-order traversal. Match the lists printed for each structure against the lists in
Table 15. Select the data structure from which the corresponding correct ordered list of
strings is given.

Ordered list of strings Abstract data type
“bovine” “ilk.” “of” “is” “cow” “the” “The” class List
“The” “cow” “is” “of” “the” “bovine” “ilk.” class Queue
“bovine” “cow” “ilk.” “is” “of” “The” “the” class Stack
“ilk.” “bovine” “the” “of” “is” “cow” “The” class Tree

Table 15. Ordered list of strings

a. Tree
b. List
c. Queue
d. Stack

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 14

16. Which of the following is a valid implementation of the function IsFull for a queue
whose individual elements are allocated dynamically as shown in the Figure below?

a. bool IsFull(void)

{ Element* e=new Element;
 bool v=(bool)e;
if (e) delete e;
return v;

}

b. bool IsFull(void){return count>=size;}

c. bool IsFull(void)
{ Element* e=new Element;
 bool v=(bool)(!e);
 if (e) delete e;
 return v;
}

d. bool IsFull(void){return count<=0;}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 15

struct QueueException{
QueueException(char* m)
{ cout<<endl <<”I am the Queue and I am “ << m << “.” << endl;
}

};
template <class T>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value of type T stored in this element
Element(Element* n,T d):newer(n),data(d){}//Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(){} //Constructor

};
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill(Element* e){…} //Reclaims storage for all elements

public:
Queue(); //Constructor
~Queue(); //Destructor
bool IsEmpty(void){…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T v) {…} //Insert a value, v, on the Queue
T Deq(void) {…} //Remove the oldest value on the Queue
int Count(void) {…} //Return the number of elements on the Queue

};
Figure 16. class Queue

17. What is the maximum number of comparisons required to find a key in a complete

binary tree having 9,754 nodes?

a. 12
b. 14
c. 11
d. 13

18. Which of the following is a valid implementation of function IsFull for a stack whose

elements are stored in a dynamically allocated array as shown in the Figure below?

a. bool IsFull(void){return tos>size;}
b. bool IsFull(void){return size>tos;}
c. bool IsFull(void){return size-1<=tos;}
d. bool IsFull(void){return tos>=size;}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 16

struct StackException{
StackException(char* m)
{ cout<<endl <<”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

int size; //Number of elements available
int tos; //Index of the element on top of the Stack
T* S; //Points to an array of type T containing the elements of the
Stack

public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaim storage used to implement the Stack
bool IsEmpty(void); //Is the Stack empty?
bool IsFull(void); //Is the Stack full?
void Push(T d); //Insert a value, v, on top of the Stack.
T Pop(void); //Remove and return the element on top of the Stack

};
Figure 18. class Stack

19. Which of the following is a valid implementation of the function Kill, for a list whose

individual elements are allocated dynamically as shown in the Figure below?

a. void Kill(Element* e)
{ if (e==largest) return;

Kill(e->larger);
delete e;

}

b. void Kill(Element* e)
{ if (e->key<MAX) return;

Kill(e->larger);
delete e;

}

c. void Kill(Element* e)
{ if (e!=largest) return;
 Kill(e->larger);
 delete e;
}

d. void Kill(Element* e)
{ if (e==largest){

Kill(e->larger);
delete e;

}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 17

}
template <class T>
class List {

struct Element {
Element* smaller; //References the next smaller element
T key; //Key of type T
Element* larger; //References the next larger element
Element(){} //Default constructor
 //Constructor assigning all member data
Element(Element* s,T k,Element *l):smaller(s),key(k),larger(l){}

};
Element* largest; //Points to the sentinel
Element* cursor; //Points to the cursor
void Kill(Element* e); //Reclaims storage for all elements except the
sentinel

protected:
const T MAX; //Maximum element of type T stored in the sentinel

public:
List(T m); //Constructor, m is the maximum value of type T
~List(); //Destructor, reclaim storage for the list
void Insert(T k); //Insert element k
void Remove(T k); //Remove element k
void Print(ostream& o,char* title); //Print the list, title={i1,i2,…,in}
void Scan(istream& i); //Store values found in stream in the list
void First(void); //Position the cursor on the smallest element
void Next(void); //Position the cursor on the next larger element
bool IsEol(void); //Is the cursor just past the largest element on the
list
T Member(void); //Return the value of the element on which the
cursor
 //is positioned
bool IsMember(T k); //Is member k an element of the list

};
Figure 19. class List

20. Which of the following is a valid implementation of the constructor, Queue, for a queue

whose elements are stored in a dynamically allocated array as shown in the Figure
below?

a. Queue(int sz=100):size(sz),count(0),oldest(-1),newest(size-1){Q=new T[size];}
b. Queue(int sz=100):size(sz),count(0),oldest(0),newest(-1){Q=new T[size];}
c. Queue(int sz=100):size(sz),count(0),oldest(0),newest(0){Q=new T[size];}
d. Queue(int sz=100):size(sz),count(0),oldest(-1),newest(0){Q=new T[size];}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 18

struct QueueException{
QueueException(char* m)
{ cout<<endl <<”I am the Queue and I am “ << m << “.” << endl;
}

};
template <class T>
class Queue {

int size; //Number of available elements to store values on the Queue

int count; //Number of elements stored on the Queue
T* Q; //Points to a dynamically allocated array used to implement the

// Queue
int oldest; //Index of the oldest element on the Queue
int newest; //Index of the newest element on the Queue

public:
Queue(int sz=100){…} //Constructor, initialize member data and allocate storage for
the

//Queue
~Queue(){…} //Destructor, reclaim storage
bool IsEmpty(void) {…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T d) {…} //Insert a value, d, on the Queue
T Deq(void){…} //Remove and return the oldest value on the Queue

};

Figure 20. class Queue

21. What is the time complexity of the destructor, ~Queue, for a queue whose elements are
stored in a dynamically allocated array as shown in the Figure below?

a. 𝑂𝑂(𝑛𝑛)
b. 𝑂𝑂(1)
c. 𝑂𝑂(log2 𝑛𝑛)
d. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 19

struct QueueException{
QueueException(char* m)
{ cout<<endl <<”I am the Queue and I am “ << m << “.” << endl;
}

};
template <class T>
class Queue {

int size; //Number of available elements to store values on the Queue

int count; //Number of elements stored on the Queue
T* Q; //Points to a dynamically allocated array used to implement the

// Queue
int oldest; //Index of the oldest element on the Queue
int newest; //Index of the newest element on the Queue

public:
Queue(int sz=100){…} //Constructor, initialize member data and allocate storage for
the

//Queue
~Queue(){…} //Destructor, reclaim storage
bool IsEmpty(void) {…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T d) {…} //Insert a value, d, on the Queue
T Deq(void){…} //Remove and return the oldest value on the Queue

};

Figure 21. class Queue

22. What is the time complexity of function Insert for a list whose elements are individually
stored in dynamically allocated elements as shown in the Figure below?

a. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)
b. 𝑂𝑂(log2 𝑛𝑛)
c. 𝑂𝑂(1)
d. 𝑂𝑂(𝑛𝑛)

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 20

template <class T>
class List {

struct Element {
Element* smaller; //References the next smaller element
T key; //Key of type T
Element* larger; //References the next larger element
Element(){} //Default constructor
 //Constructor assigning all member data
Element(Element* s,T k,Element *l):smaller(s),key(k),larger(l){}

};
Element* largest; //Points to the sentinel
Element* cursor; //Points to the cursor
void Kill(Element* e); //Reclaims storage for all elements except the
sentinel

protected:
const T MAX; //Maximum element of type T stored in the sentinel

public:
List(T m); //Constructor, m is the maximum value of type T
~List(); //Destructor, reclaim storage for the list
void Insert(T k); //Insert element k
void Remove(T k); //Remove element k
void Print(ostream& o,char* title); //Print the list, title={i1,i2,…,in}
void Scan(istream& i); //Store values found in stream in the list
void First(void); //Position the cursor on the smallest element
void Next(void); //Position the cursor on the next larger element
bool IsEol(void); //Is the cursor just past the largest element on the
list
T Member(void); //Return the value of the element on which the
cursor
 //is positioned
bool IsMember(T k); //Is member k an element of the list

};
Figure 22. class List

23. Which of the following is a valid implementation of function IsEmpty for a stack whose

elements are stored in a dynamically allocated array as shown in the Figure below?

a. bool IsEmpty(void){return tos>0;}
b. bool IsEmpty(void){return -1<=tos;}
c. bool IsEmpty(void){return 0>=tos;}
d. bool IsEmpty(void){return -1>=tos;}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 21

struct StackException{
StackException(char* m)
{ cout<<endl <<”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

int size; //Number of elements available
int tos; //Index of the element on top of the Stack
T* S; //Points to an array of type T containing the elements of the
Stack

public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaim storage used to implement the Stack
bool IsEmpty(void); //Is the Stack empty?
bool IsFull(void); //Is the Stack full?
void Push(T d); //Insert a value, v, on top of the Stack.
T Pop(void); //Remove and return the element on top of the Stack

};
Figure 23. class Stack

24. Which of the following is a valid implementation of the constructor, List, for a list whose

individual elements are allocated dynamically as shown in the Figure below?

a. List(T m):MAX(m)
{ Element* n=new Element;

n->key=m;
n=cursor;
n=largest; n=n->smaller;
n=n->larger;

}

b. List(T m):MAX(m)
{ Element* n=new Element(0,MAX,0);

n=cursor=largest=n->smaller=n->larger;
}

c. List(T m):MAX(m)
{ Element* n=new Element(0,MAX,0);

cursor=largest=n->smaller=n->larger=n;
}

d. List(T m):MAX(m)
{ MAX=m; Element* n=new Element;

n->key=m;cursor=largest=n->smaller=n->larger=n;
}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 22

template <class T>
class List {

struct Element {
Element* smaller; //References the next smaller element
T key; //Key of type T
Element* larger; //References the next larger element
Element(){} //Default constructor
 //Constructor assigning all member data
Element(Element* s,T k,Element *l):smaller(s),key(k),larger(l){}

};
Element* largest; //Points to the sentinel
Element* cursor; //Points to the cursor
void Kill(Element* e); //Reclaims storage for all elements except the
sentinel

protected:
const T MAX; //Maximum element of type T stored in the sentinel

public:
List(T m); //Constructor, m is the maximum value of type T
~List(); //Destructor, reclaim storage for the list
void Insert(T k); //Insert element k
void Remove(T k); //Remove element k
void Print(ostream& o,char* title); //Print the list, title={i1,i2,…,in}
void Scan(istream& i); //Store values found in stream in the list
void First(void); //Position the cursor on the smallest element
void Next(void); //Position the cursor on the next larger element
bool IsEol(void); //Is the cursor just past the largest element on the
list
T Member(void); //Return the value of the element on which the
cursor
 //is positioned
bool IsMember(T k); //Is member k an element of the list

};
Figure 24. class List

25. Which of the following is a valid implementation of the function IsEmpty, for a queue

whose elements are stored in a dynamically allocated array as shown in the Figure
below?

a. bool IsEmpty(void){return 0<=count;}
b. bool IsEmpty(void){return count!=0;}
c. bool IsEmpty(void){return count>=0;}
d. bool IsEmpty(void){return 0>=count;}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 23

struct QueueException{
QueueException(char* m)
{ cout<<endl<<”I am the Queue and I am “ << m << “.” << endl;
}

};
template <class T>
class Queue {

int size; //Number of available elements to store values on the Queue

int count; //Number of elements stored on the Queue
T* Q; //Points to a dynamically allocated array used to implement the

// Queue
int oldest; //Index of the oldest element on the Queue
int newest; //Index of the newest element on the Queue

public:
Queue(int sz=100){…} //Constructor, initialize member data and allocate storage for
the

//Queue
~Queue(){…} //Destructor, reclaim storage
bool IsEmpty(void) {…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T d) {…} //Insert a value, d, on the Queue
T Deq(void){…} //Remove and return the oldest value on the Queue

};

Figure 25. class Queue

26. Which of the following sequences is an in-order traversal of the binary search tree in the
Figure below?

a. none of the other alternatives
b. A I F Q T M
c. A F I M Q T
d. M F A I T Q

M

F T

A I Q
Figure 26. Binary tree

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 24

27. What is the time complexity of function Kill for a stack whose individual elements are

allocated dynamically as shown in the Figure below?

a. 𝑂𝑂(𝑛𝑛)
b. 𝑂𝑂(1)
c. 𝑂𝑂(log2 𝑛𝑛)
d. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)

struct StackException{

StackException(char* m)
{ cout<<endl <<”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

struct Element {
Element* prev; //Points to the previous element on the
Stack
T data; //Data of type T stored in this element
Element(Element* p,T d):prev(p),data(d){} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(){} //Constructor, initialize no member data

};
Element* tos; //Points to the element on top of the Stack
void Kill(Element* e) {…} //Reclaims storage for all elements on the

//Stack
public:

Stack():…{…} //Constructor
~Stack(){} //Destructor
bool IsEmpty(void){…} //Is the Stack empty?
bool IsFull(void) {…} //Is the Stack full?
void Push(T d) {…} //Push a value, d, on the Stack
T Pop(void) {…} //Pop a value from the Stack

};
Figure 27. class Stack

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 25

28. Which of the following is a valid implementation of the function Insert, for a list whose
individual elements are allocated dynamically as shown in the Figure below?

a. void Insert(T k)

{ Element* e=largest->larger;
while (k > e->key) e=e->larger;
if (k == e->key) return;
Element* n=new Element(e->smaller,k,e);
e->smaller->larger=n;
e->smaller=n;

}
b. void Insert(T k)

{ Element* e=largest->larger;
while (k > e->key) e=e->larger;
if (k == e->key) return;
Element* n=new Element(e,k,e->larger);
e->smaller->larger=n;
e->smaller=n;

}
c. void Insert(T k)

{ Element* e=largest->larger;
while (k > e->key) e=e->larger;
if (k == e->key) return;
Element* n=new Element(e->smaller,k,e);
e->smaller=n;
e->smaller->larger=n;

}
d. void Insert(T k)

{ Element* e=largest->larger;
while (k < e->key) e=e->larger;
if (k == e->key) return;
Element* n=new Element(e->smaller,k,e);
e->smaller->larger=n;
e->smaller=n;

}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 26

template <class T>
class List {

struct Element {
Element* smaller; //References the next smaller element
T key; //Key of type T
Element* larger; //References the next larger element
Element(Element* s,T k,Element *l):smaller(s),key(k),larger(l){}

};
Element* largest; //Points to the sentinel
Element* cursor; //Points to the cursor
void Kill(Element* e); //Reclaims storage for all elements except the
sentinel

protected:
const T MAX; //Maximum element of type T stored in the sentinel

public:
List(T m); //Constructor, m is the maximum value of type T
~List(); //Destructor, reclaim storage for the list
void Insert(T k); //Insert element k
void Remove(T k); //Remove element k
void Print(ostream& o,char* title); //Print the list, title={i1,i2,…,in}
void Scan(istream& i); //Store values found in stream in the list
void First(void); //Position the cursor on the smallest element
void Next(void); //Position the cursor on the next larger element
bool IsEol(void); //Is the cursor just past the largest element on the
list
T Member(void); //Return the value of the element on which the
cursor
 //is positioned
bool IsMember(T k); //Is member k an element of the list

};
Figure 28. class List

29. What is the time complexity of the destructor, ~List, for a list whose individual elements

are allocated dynamically as shown in the Figure below?

a. 𝑂𝑂(1)
b. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)
c. 𝑂𝑂(𝑛𝑛)
d. 𝑂𝑂(log2 𝑛𝑛)

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 27

template <class T>
class List {

struct Element {
Element* smaller; //References the next smaller element
T key; //Key of type T
Element* larger; //References the next larger element
Element(){} //Default constructor
 //Constructor assigning all member data
Element(Element* s,T k,Element *l):smaller(s),key(k),larger(l){}

};
Element* largest; //Points to the sentinel
Element* cursor; //Points to the cursor
void Kill(Element* e); //Reclaims storage for all elements except the
sentinel

protected:
const T MAX; //Maximum element of type T stored in the sentinel

public:
List(T m); //Constructor, m is the maximum value of type T
~List(); //Destructor, reclaim storage for the list
void Insert(T k); //Insert element k
void Remove(T k); //Remove element k
void Print(ostream& o,char* title); //Print the list, title={i1,i2,…,in}
void Scan(istream& i); //Store values found in stream in the list
void First(void); //Position the cursor on the smallest element
void Next(void); //Position the cursor on the next larger element
bool IsEol(void); //Is the cursor just past the largest element on the
list
T Member(void); //Return the value of the element on which the
cursor
 //is positioned
bool IsMember(T k); //Is member k an element of the list

};
Figure 29. class List

30. Which of the following is a valid implementation of function Push for a stack whose

individual elements are allocated dynamically as shown in the Figure below?

a. void Push(T d)
{ if (IsFull()) throw StackException("full");

Element* e=new Element(tos,d);
}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 28

b. void Push(T d)
{ if (IsFull()) throw StackException("full");

Element* e=new Element(d);
e->prev=tos;
tos=e;

}

c. void Push(T d)
{ if (IsFull()) throw StackException("full");

Element* e=new Element;
tos=e;
e->prev=tos;
e->data=d;

}

d. void Push(T d)
{ if (IsFull()) throw StackException("full");

Element* e=new Element(d,tos);
tos=e;

}

struct StackException{
StackException(char* m)
{ cout<<endl << ”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

struct Element {
Element* prev; //Points to the previous element on the Stack
T data; //Data of type T stored in this element
Element(Element* p,T d):prev(p),data(d){} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(){} //Constructor, initialize no member data

};
Element* tos; //Points to the element on top of the Stack
void Kill(Element* e) {…} //Reclaims storage for all elements on the Stack

public:
Stack():…{…} //Constructor
~Stack(){} //Destructor
bool IsEmpty(void){…} //Is the Stack empty?
bool IsFull(void) {…} //Is the Stack full?
void Push(T d) {…} //Push a value, d, on the Stack
T Pop(void) {…} //Pop a value from the Stack

};
Figure 30. class Stack

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 29

31. Which of the following is a valid implementation of the constructor, Stack, for a stack

whose individual elements are allocated dynamically as shown in the Figure below?

a. Stack():tos(~NULL){}
b. Stack():tos(0){}
c. Stack():tos(!0){}
d. Stack():tos(1.602e-19){}

struct StackException{

StackException(char* m)
{ cout<<endl << ”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

struct Element {
Element* prev; //Points to the previous element on the Stack
T data; //Data of type T stored in this element
Element(Element* p,T d):prev(p),data(d){} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(){} //Constructor, initialize no member data

};
Element* tos; //Points to the element on top of the Stack
void Kill(Element* e) {…} //Reclaims storage for all elements on the Stack

public:
Stack():…{…} //Constructor
~Stack(){} //Destructor
bool IsEmpty(void){…} //Is the Stack empty?
bool IsFull(void) {…} //Is the Stack full?
void Push(T d) {…} //Push a value, d, on the Stack
T Pop(void) {…} //Pop a value from the Stack

};
Figure 31. class Stack

32. Which of the following is a valid implementation of the function Enq for a queue whose

individual elements are allocated dynamically as shown in the Figure below?

a. void Enq(T d)
{ if (IsFull()) throw QueueException(“full”);

Element* e=new Element(d);
if (count==0) oldest=e; else newest->newer=e;
newest=e;
count++;

}
b. void Enq(T d)

{ if (IsFull()) throw QueueException(“full”);

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 30

Element* e=new Element(d);
if (IsEmpty()) {oldest=e;} else {newest->newer=e; newest=e;}
count++;

}
c. void Enq(T d)

{ if (IsFull()) throw QueueException(“full”);
Element* e=new Element(d);
if (!IsFull()) oldest=e; else newest->newer=e;
newest=e;
count++;

}
d. void Enq(T d)

{ if (IsFull()) throw QueueException(“full”);
Element* e=new Element(d);
newest=e;
if (IsEmpty()) oldest=e; else newest->newer=e;
count++;

}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 31

struct QueueException{
QueueException(char* m)
{ cout<<endl <<”I am the Queue and I am “ << m << “.” << endl;
}

};
template <class T>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value of type T stored in this element
Element(Element* n,T d):newer(n),data(d){}//Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(){} //Constructor

};
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill(Element* e){…} //Reclaims storage for all elements

public:
Queue(); //Constructor
~Queue(); //Destructor
bool IsEmpty(void){…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T v) {…} //Insert a value, v, on the Queue
T Deq(void) {…} //Remove the oldest value on the Queue
int Count(void) {…} //Return the number of elements on the
Queue

};
Figure 32. class Queue

33. What is the maximum number of comparisons required to find a key in a binary tree
having 191 nodes and whose height is equal to 12?

a. 11
b. 14
c. 13
d. 12

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 32

34. Which of the following is a valid implementation of function Pop for a stack whose

elements are stored in a dynamically allocated array as shown in the Figure below?

a. T Pop(void)
{ if (IsEmpty()) throw StackException(“empty”);
 return S[tos];

--tos;
}

b. T Pop(void)
{ if (IsEmpty()) throw StackException(“empty”);

T v=S[tos];
--tos;
return v;

}

c. T Pop(void)
{ if (IsEmpty()) throw StackException(“empty”);
 return S[--tos];
}

d. T Pop(void)
{ if (IsEmpty()) throw StackException(“empty”);

return S[tos];
tos--;

}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 33

struct StackException{
StackException(char* m)
{ cout<<endl <<”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

int size; //Number of elements available
int tos; //Index of the element on top of the Stack
T* S; //Points to an array of type T containing the elements of the
Stack

public:
Stack(int sz=100); //Constructor, initialize member data and allocate storage
~Stack(); //Destructor, reclaim storage used to implement the Stack
bool IsEmpty(void); //Is the Stack empty?
bool IsFull(void); //Is the Stack full?
void Push(T d); //Insert a value, v, on top of the Stack.
T Pop(void); //Remove and return the element on top of the Stack

};
Figure 34. class Stack

35. What is the time complexity of the destructor, ~Queue, for a queue whose individual

elements are allocated dynamically as shown in the Figure below?

a. 𝑂𝑂(log2 𝑛𝑛)
b. 𝑂𝑂(1)
c. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)
d. 𝑂𝑂(𝑛𝑛)

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 34

struct QueueException{
QueueException(char* m)
{ cout<<endl <<”I am the Queue and I am “ << m << “.” << endl;
}

};
template <class T>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T data; //Value of type T stored in this element
Element(Element* n,T d):newer(n),data(d){}//Constructor
Element(T t):newer(0),v(t){} //Constructor
Element(){} //Constructor

};
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements
void Kill(Element* e){…} //Reclaims storage for all elements

public:
Queue(); //Constructor
~Queue(); //Destructor
bool IsEmpty(void){…} //Is the Queue empty?
bool IsFull(void) {…} //Is the Queue full?
void Enq(T v) {…} //Insert a value, v, on the Queue
T Deq(void) {…} //Remove the oldest value on the Queue
int Count(void) {…} //Return the number of elements on the Queue

};
Figure 35. class Queue

36. Select the expressions in infix notation equivalent to the expression tree in the Figure

below.

a. 1-2/3*4*5+6/7
b. (1-2)/3*(4*5+6/7)
c. * / - 1 2 3 + * 4 5 / 6 7
d. 1 2 – 3 / 4 5 * 6 7 / + *

71 2

3

4 5 6

-

/

*

*

+

/

Figure 36. An expression tree

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 35

37. What is the time complexity of function Push for a stack whose individual elements are

allocated dynamically as shown in the Figure below?

a. 𝑂𝑂(log2 𝑛𝑛)
b. 𝑂𝑂(1)
c. 𝑂𝑂(𝑛𝑛 log2 𝑛𝑛)
d. 𝑂𝑂(𝑛𝑛)

struct StackException{

StackException(char* m)
{ cout<<endl <<”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

struct Element {
Element* prev; //Points to the previous element on the Stack
T data; //Data of type T stored in this element
Element(Element* p,T d):prev(p),data(d){} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(){} //Constructor, initialize no member data

};
Element* tos; //Points to the element on top of the Stack
void Kill(Element* e) {…} //Reclaims storage for all elements on the Stack

public:
Stack():…{…} //Constructor
~Stack(){} //Destructor
bool IsEmpty(void){…} //Is the Stack empty?
bool IsFull(void) {…} //Is the Stack full?
void Push(T d) {…} //Push a value, d, on the Stack
T Pop(void) {…} //Pop a value from the Stack

};

Figure 37. class Stack

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 36

38. Which of the following is a valid implementation of function Kill for a stack whose
elements are individually stored in dynamically allocated elements as shown in the
Figure below?

a. void Kill(Element* e)

{ while (e) {
e=e->prev;
Element* p=e;
delete p;

}
}

b. void Kill(Element* e)
{ while (e) {

Element* p=e;
e=e->prev;
delete e;

}
}

c. void Kill(Element* e)
{ if (e) Kill(e->prev);

delete e;
}

d. void Kill(Element* e)
{ if (!e) return;
 Kill(e->prev);
 delete e;
}

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 37

struct StackException{
StackException(char* m)
{ cout<<endl <<”I am the Stack and I am “ << m << “.” << endl;
}

};
template <class T>
class Stack {

struct Element {
Element* prev; //Points to the previous element on the Stack
T data; //Data of type T stored in this element
Element(Element* p,T d):prev(p),data(d){} //Constructor
Element(T d):data(d){} //Constructor, initialize
Element(){} //Constructor, initialize no member data

};
Element* tos; //Points to the element on top of the Stack
void Kill(Element* e) {…} //Reclaims storage for all elements on the Stack

public:
Stack():…{…} //Constructor
~Stack(){} //Destructor
bool IsEmpty(void){…} //Is the Stack empty?
bool IsFull(void) {…} //Is the Stack full?
void Push(T d) {…} //Push a value, d, on the Stack
T Pop(void) {…} //Pop a value from the Stack

};

Figure 38. class Stack

39. Which of the following sequences is a pre-order traversal of the binary search tree in the
Figure below?

a. M F A I T Q
b. A I F Q T M
c. none of the other alternatives
d. A F I M Q T

M

F T

A I Q
Figure 39. Binary tree

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 38

40. Which of the following sequences is a post-order traversal of the binary search tree in
the Figure below?

a. A I F Q T M
b. A F I M Q T
c. M F A I T Q
d. none of the other alternatives

M

F T

A I Q
Figure 40. Binary tree

41. What is the time complexity function of function given in Figure below? You may

complete the table provided to compute your answer.

a. 𝑻𝑻(𝒏𝒏) = 𝟑𝟑
𝟐𝟐
𝒏𝒏𝟐𝟐 + 𝟏𝟏𝟏𝟏

𝟐𝟐
𝒏𝒏+ 𝟑𝟑

b. 𝑻𝑻(𝒏𝒏) = 𝟑𝟑𝒏𝒏𝟐𝟐 + 𝟓𝟓𝟓𝟓 + 𝟑𝟑
c. 𝑻𝑻(𝒏𝒏) = 𝟑𝟑

𝟐𝟐
𝒏𝒏𝟐𝟐 + 𝟓𝟓

𝟐𝟐
𝒏𝒏+ 𝟑𝟑

d. 𝑻𝑻(𝒏𝒏) = 𝟑𝟑𝒏𝒏𝟐𝟐 + 𝟏𝟏𝟏𝟏𝒏𝒏 + 𝟑𝟑

int sum=0;
for (int a=0;a<n;a++)

for (int b=0;b<a;b++)
sum++;

Figure 41. Code Fragment

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 39

Line Code Cost
1 int sum=0;
2 int a=0;
3 while (a<n) {

4 int b=0;
5 while (b<a) {

6 sum++;
7 b++;
8 }
9 a++;
10 }

42. What is the smallest integer value 𝑛𝑛0 that makes 𝑇𝑇(𝑛𝑛) = 𝑂𝑂(𝑛𝑛2) where 𝑇𝑇(𝑛𝑛) = 3𝑛𝑛2+

5𝑛𝑛 + 3 and 𝑐𝑐 = 4?

a. 7
b. 6
c. 8
d. 5

43. What is the time complexity function of function given in Figure below? You may

complete the table provided to compute your answer.

a. 𝑻𝑻(𝒏𝒏) = � 𝒏𝒏= 𝟎𝟎,𝑻𝑻(𝟎𝟎) = 𝟏𝟏
𝒏𝒏> 0,𝑇𝑇(𝒏𝒏) = 𝟑𝟑𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐(𝒏𝒏)+ 𝟏𝟏

b. 𝑻𝑻(𝒏𝒏) = � 𝒏𝒏 = 𝟎𝟎,𝑻𝑻(𝟎𝟎) = 𝟏𝟏
𝒏𝒏> 0,𝑇𝑇(𝒏𝒏) = 𝟑𝟑(𝐥𝐥𝐥𝐥𝐥𝐥 𝟐𝟐(𝒏𝒏) + 𝟏𝟏) + 𝟏𝟏

c. 𝑻𝑻(𝒏𝒏) = � 𝒏𝒏= 𝟎𝟎,𝑻𝑻(𝟎𝟎) = 𝟏𝟏
𝒏𝒏> 0,𝑇𝑇(𝒏𝒏) = 𝟑𝟑(𝐥𝐥𝐥𝐥𝐥𝐥 𝟐𝟐(𝒏𝒏) + 𝟏𝟏)

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 40

d. 𝑻𝑻(𝒏𝒏) = � 𝒏𝒏 = 𝟎𝟎,𝑻𝑻(𝟎𝟎) = 𝟏𝟏
𝒏𝒏> 0,𝑇𝑇(𝒏𝒏) = 𝟑𝟑𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐(𝒏𝒏)

while (n>0) n=n/2;

Figure 41. Code Fragment

Line Code Cost
1 while (n>0) {

2 n=n/2;

3 }

44. What is the smallest integer value 𝑛𝑛0 that makes 𝑇𝑇(𝑛𝑛) = 𝑂𝑂(log2 (𝑛𝑛)) where 𝑇𝑇(𝑛𝑛) =

3log2(𝑛𝑛) + 1 and 𝑐𝑐 = 4?

a. 2
b. 4
c. 5
d. 3

45. In what order do the keys Anna, Beatrice, Colette, Dee, Edith, Felicia, and Grace need to

be inserted into a binary tree to guarantee that the tree has a height no greater than
two (2)?

a. Anna, Beatrice, Colette, Dee, Edith, Felicia, Grace
b. Beatrice, Anna, Felicia, Colette, Edith, Grace, Dee
c. Grace, Felicia, Edith, Dee, Colette, Anna
d. Dee, Beatrice, Felicia, Anna, Colette, Edith, Grace

46. What is the best class to implement a page replacement policy such that the oldest page

is replaced?

a. Queue
b. Ordered list
c. Stack
d. Heap

Programming II CRN 20975 Test 3 Version 1
CMSC 2613 Spring 2017

 41

47. How many comparisons are required to insert the integer 16 into a list implemented by
allocating one element for every integer, having links to both the smaller and larger
elements, having a sentinel element containing an integer larger than any on the list,
connecting all the links in both directions so that a circle is maintained? The list
contains the following integer 1, 2, 4, 8, 32, and 64 excluding the sentinel element.

a. 4
b. 5
c. 3
d. 6

48. How many comparisons are required to insert the integer 20 into a binary tree of

minimum height that contains the following integers: 4, 8, 12, 16, 24, and 28?

a. 2
b. 1
c. 3
d. 4

49. What is the maximum number of comparisons required to insert a key in a binary tree of

minimum height that has 729 keys in the tree?

a. 10
b. 8
c. 11
d. 9

50. What is the length of the longest path from the root to a leaf is a tree containing 729

keys where each node can have up to four (4) children and the tree has the minimum
height?

a. 6
b. 4
c. 5
d. 3

