
Programming II Bracket matching
CMSC 2613 Project p02

 1

Assignment: Write a program that determines if a string contains a balanced set of
brackets. Brackets consist of the pairs (), [], and { }. A string is a sequence
of characters containing no white space. White space is a sequence of one
or more blank characters, new line characters, or tab characters. A string is
balanced if an opening bracket, (, [, or { is matched by the corresponding
closing bracket, },], or). Brackets are matched in a last-in-first-out order. If
an opening curly brace, {, appeared in the string then the next bracket in the
string must be a closing curly brace }. Any sequence of characters that are
not brackets can appear between the opening and closing brackets.

Prohibition: Use of the C++ Standard Template Library is prohibited in the
implementation of this project. Use of template class stack presented in
Lecture 10 is prohibited.

Program Files: Project 2 consists of files p02.cpp, Stack02.h, Stack02.cpp, and p02make.
Project file names are exactly as given. Failure to employ the foregoing
names will result in a score of zero (0) for this project

Project files must be stored in the root directory of your student account.
Failure to store project files in the root directory of your student account
will result in a score of zero (0) for this project.

 File Description
 p02.cpp File p02.cpp contains functions that process command line

arguments and distinguish strings having balanced
brackets.

 Stack02.h File Stack02.h defines class Stack. Class Stack implements a
character stack by dynamically allocating an array of
characters. Class Stack is a concrete class and is not
implemented via a template.

 Stack02.cpp File Stack02.cpp contains the implementation of member
functions of class Stack.

 p02make File p02make contains instructions for the UNIX utility
make. Instructions in file p02make direct the creation of
program p02.

Command Line: Project 2 can be invoked with zero, one, or two program parameters. The
first program parameter is the input file name. The second parameter is the
output file name. Sample command lines together with corresponding
actions by program p02 are shown below. Boldfaced type indicates data
entered at the keyboard by the user.
$ p02
Enter the input file name: i02.dat
Enter the output file name: o02.dat

$ p02 i02.dat
Enter the output file name: o02.dat

$ p02 i02.dat o02.dat

Input File: File i02.dat in the class directory ~tt/cs2613/ contains a list of
representative identifiers. Refer to Figure 1. Input file format.

Programming II Bracket matching
CMSC 2613 Project p02

 2

Output File: Program p02 produces file o02.dat. File o02.dat shown in Figure 2 is the
output produced by program p02 given the input file shown in Figure 1.

Figure 1.
Input file format

(({}[{(){}}]))
(({}[{(){}}]})
(o(t{b}m[s{t(f)s{t}d}f]s)p)us
(I(l{e}e[a{m(a)h{t}f}j]k}s)x

Figure 2.
Output file format

(({}[{(){}}])) is balanced.
(({}[{(){}}]}) is not balanced.
(o(t{b}m[s{t(f)s{t}d}f]s)p)us is balanced.
(I(l{e}e[a{m(a)h{t}f}j]k}s)x is not balanced.

Algorithm:

bool isBalanced(const string& candidate)
{ Stack S;

try {
for all characters, 𝑐𝑐𝑖𝑖, of string candidate in the range 0 ≤ 𝑖𝑖 < 𝑛𝑛, where 𝑛𝑛 is the number of
characters in string candidate do

if 𝑐𝑐𝑖𝑖 is an opening bracket, one of ‘(‘, ‘[‘, or ‘{‘ then push it on Stack S;
if 𝑐𝑐𝑖𝑖 is a closing bracket, one of ‘)‘, ‘]‘, or ‘}‘ then

1. pop character 𝑐𝑐𝑗𝑗 from Stack S and
2. Here 𝑐𝑐𝑖𝑖is the closing bracket and 𝑐𝑐𝑗𝑗 is the opening bracket. Determine if 𝑐𝑐𝑗𝑗 is

the corresponding opening bracket for which character 𝑐𝑐𝑖𝑖 is the closing
bracket. If 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝑗𝑗 are a matched pair do nothing. If ci and cj are
mismatched then return false, indicating that the candidate is not balanced.

} catch(StackEmptyException) {
return false;

}
return true if stack S is empty, false otherwise;

}

	p02.cpp

