Programming Il template
CMSC 2613

#ifndef Heap_h
#define Heap_h 1
#tinclude<iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <limits>
using namespace std;
//
// HeapException Constructor
//
struct HeapException{
HeapException(char* m)
{ cout<<endl
cout<<"lamthe Heapandlam " << m<<".";
cout << endl;

}

b

/!

/!

template <class 7>

class Heap {
int size; //Number of available entries
int count; //Number of occupied entries
T H; //Points to an array that stores elements of the

//Heap

const T MIN; //Mininum value of type T
//

//Function Graph prints the elements of the heap by performing an inorder traversal
//and indenting each element according to its depth in the heap.
//
void Graph(ostream& o, int depth, int n)
{ if (n>count) return;
Graph(o, depth + 1, 2 * n);
o << endl;
for (int a = 0; a < depth; a++) 0 << " " //8 spaces
0 << H[nJ;
Graph(o, depth +1,2 * n + 1);

class Heap
Lecture 43

Programming Il template class Heap
CMSC 2613 Lecture 43

void Title(ostream& o)
{ o<<endl]

0 << setw(8) << "min";

0 << setw(8) << "last";

0 << setw(8) << "count";

0 << setw(8) << "a";

0 << setw(8) << "a*2";

0 << setw(8) << "c";

0 << setw(8) << "c+1";

0 << setw(8) << "H[c]";

0 << setw(8) << "H[c+1]";
}
public:
//
// Heap Constructor
//
Heap(T m,int sz=100):MIN(m),size(sz),count(0){H=new T[size];H[0]=MIN;}

//
// Heap Destructor

//

~Heap(){ if (H) delete [] H; }

//

//Function IsFull determines if the Heap is full.

//

bool IsFull(void){return count >= size - 1; }

//

//Function IsEmpty determines if the Heap is empty.
//

bool IsEmpty(void){ return count == 0; }

//

//Function Insert inserts a new value v into the heap
//

void Insert(T v)
{ if (IsFull()) throw HeapException(" full ");

int a = ++count; // pre-increment count
while(H[a/2] > v) {
Hla] = Hla/2]; // child = parent
a/=2; // go to parent
}
Hla] = v;

Programming Il template class Heap
CMSC 2613 Lecture 43

/]

//Function remove removes the smallest element

/1

T Remove(void)
{ if (IsEmpty()) throw HeapException(" empty ");

T min=H[1];
T last=H[count--];
int a,child,;
for (a=1;a0*2<=count;a=child) {
child=a*2; // child is left child of parent

if ((child!=count) && (H[child+1]<H[child])) child++;
if (last>H[child]) H[a]l=H[child]; else break;

}
H[a] = last;
return min;
}
//

//Function print first prints a title and then prints the heap as a linear list.
//
void Print(ostream& o, char* title)
{ o<<end

o0 << title;
o<<endl
for (int a=1;a<=count;a++) o << setw(5) << Hl[a];
o << endl;
}
//

//Function Scan reads values from input stream i and stores them into the Heap.

/]

void Scan(istream& i)

{ for(){
Tv;
i>>v;
if (i.eof()) break;
Insert(v);
}
}

Programming Il template class Heap
CMSC 2613 Lecture 43

//
//Function Sort sorts the Heap. Elements of the Heap are sorted
//in ascending order.
//
void Sort(void)
{ T*J=new T[size];
J[0]=MIN;
int g=1;
while (/sEmpty()) {
T v=Remove();

Ja++])=v;
}
if (H) delete H;
H=J;
count=a-1;
}
//

//Function Graph call private member function Graph to
//print the heap using an inorder traversal and indenting each element
//according to its depth in the Heap.
//
void Graph(ostream& o,char* title)
{ o<<end]

o0 << title;

Graph(o,0,1);

o<<endl

}
//
//Function Print prints the Heap as a linear list.
//
void Print(ostream& o)
{ o<<endl
for (int a=1;a<=count;a++) o << setw(5) << H[a];
o << endl;

}
//
//Function Dump prints all member data stored in the Heap
//
void Dump(ostream& o)
{ o<<end,
0 << "size=" << size << " count=" << count;
Print(o);

}
b
#endif

