
Programming II template class Heap
CMSC 2613 Lecture 43

1

#ifndef Heap_h
#define Heap_h 1
#include<iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <limits>
using namespace std;
//--
// HeapException Constructor
//--
struct HeapException{

HeapException(char* m)
{ cout << endl;

cout << "I am the Heap and I am " << m << ".";
cout << endl;

}
};
//--
//--
template <class T>
class Heap {

int size; //Number of available entries
int count; //Number of occupied entries
T* H; //Points to an array that stores elements of the
 //Heap
const T MIN; //Mininum value of type T
//--
//Function Graph prints the elements of the heap by performing an inorder traversal
//and indenting each element according to its depth in the heap.
//--
void Graph(ostream& o, int depth, int n)
{ if (n>count) return;

Graph(o, depth + 1, 2 * n);
o << endl;
for (int a = 0; a < depth; a++) o << " "; //8 spaces
o << H[n];
Graph(o, depth + 1, 2 * n + 1);

}

Programming II template class Heap
CMSC 2613 Lecture 43

2

void Title(ostream& o)
{ o << endl;

o << setw(8) << "min";
o << setw(8) << "last";
o << setw(8) << "count";
o << setw(8) << "a";
o << setw(8) << "a*2";
o << setw(8) << "c";
o << setw(8) << "c+1";
o << setw(8) << "H[c]";
o << setw(8) << "H[c+1]";

}
public:
//--
// Heap Constructor
//--
Heap(T m,int sz=100):MIN(m),size(sz),count(0){H=new T[size];H[0]=MIN;}
//--
// Heap Destructor
//--
~Heap(){ if (H) delete [] H; }
//--
//Function IsFull determines if the Heap is full.
//--
bool IsFull(void){return count >= size - 1; }
//--
//Function IsEmpty determines if the Heap is empty.
//--
bool IsEmpty(void){ return count == 0; }
//--
//Function Insert inserts a new value v into the heap
//--
void Insert(T v)
{ if (IsFull()) throw HeapException(" full ");

int a = ++count; // pre-increment count
while(H[a/2] > v) {

H[a] = H[a/2]; // child = parent
a /= 2; // go to parent

}
H[a] = v;

}

Programming II template class Heap
CMSC 2613 Lecture 43

3

//--
//Function remove removes the smallest element
//--
T Remove(void)
{ if (IsEmpty()) throw HeapException(" empty ");

 T min=H[1];
T last=H[count--];
int a,child;
for (a=1;a*2<=count;a=child) {

child=a*2; // child is left child of parent
if ((child!=count) && (H[child+1]<H[child])) child++;
if (last>H[child]) H[a]=H[child]; else break;

}
H[a] = last;
return min;

}
//--
//Function print first prints a title and then prints the heap as a linear list.
//--
void Print(ostream& o, char* title)
{ o << endl;

o << title;
o << endl;
for (int a=1;a<=count;a++) o << setw(5) << H[a];
o << endl;

}
//--
//Function Scan reads values from input stream i and stores them into the Heap.
//--
void Scan(istream& i)
{ for (;;) {

T v;
i >> v;
if (i.eof()) break;
Insert(v);

}
}

Programming II template class Heap
CMSC 2613 Lecture 43

4

//--
//Function Sort sorts the Heap. Elements of the Heap are sorted
//in ascending order.
//--
void Sort(void)
{ T* J=new T[size];

J[0]=MIN;
int a=1;
while (!IsEmpty()) {

T v=Remove();
J[a++]=v;

}
if (H) delete H;
H=J;
count=a-1;

}
//--
//Function Graph call private member function Graph to
//print the heap using an inorder traversal and indenting each element
//according to its depth in the Heap.
//--
void Graph(ostream& o,char* title)
{ o << endl;

o << title;
Graph(o,0,1);
o << endl;

}
//--
//Function Print prints the Heap as a linear list.
//--
void Print(ostream& o)
{ o << endl;

for (int a=1;a<=count;a++) o << setw(5) << H[a];
o << endl;

}
//--
//Function Dump prints all member data stored in the Heap
//--
void Dump(ostream& o)
{ o << endl;

o << "size=" << size << " count=" << count;
Print(o);

}
};
#endif

