
Programming II Priority Queue (Heap)
CMSC 2613 Lecture 41

 1

1. Structure Property
A heap is a binary tree that is completely
filled, with the possible exception of the
bottom level, which is filled from left to
right.

Figure 1. A complete binary tree.

Figure 2. Array implementation of the tree
in Figure 1.

Figure 3. Binary tree that is not filled from
left to right.

Figure 4. Incomplete binary tree

2. Number of nodes and Height

The number of nodes, N, in a binary tree

of height, h is: 122 1  hh N .
The height of a binary tree is: ℎ =
⌊log2𝑁⌋.

3. Position of children
Assume i is the index of a node in a
binary tree. The left child is in position
2i. The right child is in position 2i+1.
Example:
The left child of node B is D. Node B is in
position 2. Node D should be in position
2(2)=4. Note Node D is in position 4.
Node E is the right child of node B. Node
E should be in position 2(2)+1=5 and it is.

4. Position of parent
If i is the position of any node is the tree
except the root, the position of the

parent of i is  2/i .

Example:
Node G is in position 7. Calculating the

position of the parent of G,   32/7  .

Note C, the parent of G is, indeed, in
position 3.

5. Heap Order Property
For every node X, the value in the parent
of X is smaller than or equal to the value
in X. The foregoing rule applies to every
node except the root that has no parent.

Figure 5. Complete tree that is also a heap

A

B C

D E F G

H I J

A B C D E F G H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A

B C

D E F G

H I J K

A

B C

D E F G

H J

K

13

21 16

24 31 19 68

65 26 32

Programming II Priority Queue (Heap)
CMSC 2613 Lecture 41

 2

Figure 6. Complete tree that is not a heap

13

21 16

6 31 19 68

65 26 32

Programming II Priority Queue (Heap)
CMSC 2613 Lecture 41

 3

Figure 7. Definition of class Heap.

Members of class Heap.
1. Member size contains the number of

integer locations available for use by the
heap.

2. Member count enumerates the number

of integer locations in actual use by the
heap.

3. Member H points to an integer array
used to store elements of the heap.

4. Member function Graph prints elements
of the heap indented according their
depth. An inorder traversal is used.
Elements are printed on separate line.

5. Constructor Heap initializes data
members size and count. Storage for the
heap is allocated and assigned to

member H. The first element of member
H is a sentinel and assigned the
minimum integer.

6. Destructor ~Heap returns dynamically
allocated storage.

7. Member function IsFull determines if
the heap is full.

8. Member function IsEmpty determines if
the heap is empty.

9. Member function Insert inserts an
integer into the heap.

10. Member function Remove removes and
returns the element having the smallest
value.

11. Member function Print prints the
elements of the heap in index order.

12. Member function Scan reads a file
containing integers separated by white
space. Integers are inserted into the
heap.

13. Member function sort sorts the heap in
ascending order. The result is also a
heap.

14. Member function Graph prints the
elements of the heap according to their
depth from the root. Elements are
printed on separate lines. An inorder
traversal is used to print elements.

Member function Insert
1. Create a hole in the next available

position in the heap.
2. Insert the new value in the hole
3. Percolate the new element up to its

appropriate location in the heap
4. Percolation is terminated by the

existence of a sentinel having a value
smaller than any in the heap in position
zero (0).

class Heap {
int size;

 int count;
 int* H;
 void Graph

(int i
,int level
,ostream& o
);

public:
 class HeapFullException{};
 class HeapEmptyException{};
 Heap(int sz=100);
 ~Heap();
 bool IsFull(void);

bool IsEmpty(void);
 void Insert(int v);

int Remove(void);
void Print

(ostream& o
,char* title
);

void Scan(istream& i);
void Sort(void);
void Graph(ostream& o);

};

Programming II Priority Queue (Heap)
CMSC 2613 Lecture 41

 4

Figure 8. Inserting new value 14, step 1

1. Create a hole at the end of the heap in

position 11 in Figure 8.
2. Compare the value of the parent, in

position 5, with the key. Refer to Figure
8.

3. If the value of the parent (31) is greater
than the key, copy the value of parent to
the child – the newly created hole. Refer
to Figure 9.

13

16

19 6824

65 26 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

13 16 24 19 68 65 26 32

21

31

21 31

> 14

Programming II Priority Queue (Heap)
CMSC 2613 Lecture 41

 5

Figure 9. Inserting new value 14, step 2

Figure 10. Inserting new value 14, step 3

Compare the value (21) of the parent in
position (2) with the key. If the parent is
greater than the key, and it is, copy the value
of the parent to the child in position 5.
Figure 10 illustrates the comparison. The
child is shaded in Figure 10. The value of the
parent is copied to the child in Figure 11.

Figure 11. Inserting new value 14, step 4

Figure 12. Inserting new value 14, step 5

Compare the value of the parent (13) in
position 1 with the key. If the parent is
greater than the key, copy the parent to the
child. The parent is not, however, greater
than the key. Instead, assign the value of the
key to the child. The child is shaded in
Figures 12 and 13.

Figure 13. Inserting new value 14, step 6

13

16

19 6824

65 26 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

13 16 24 19 68 65 26 32

21

31

31

21 31 31

> 14

13

16

19 6824

65 26 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

13 16 24 19 68 65 26 32

21

21

31

21 21 31

13

16

19 6824

65 26 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

13 16 24 19 68 65 26 32

21

31

31

21 31 31

> 14
13

16

19 6824

65 26 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

13 16 24 19 68 65 26 32

14

21

31

14 21 31

13

16

19 6824

65 26 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13

13 16 24 19 68 65 26 32

31

21

3121 31

31

Programming II Priority Queue (Heap)
CMSC 2613 Lecture 41

 6

Member function Remove
1. Remove minimum element at the root

and leave a hole at the root.
2. Decrement the number of elements in

the heap
3. Copy the smaller of the two children

into the hole and move the hole to the
position of the child that was copied.

4. Move to the smaller child

Figure 14. Remove, step 1

Heap member function remove deletes and
returns the minimum element at the root of
the heap. The value thirteen (13) is at the
top of the heap in Figure 14.

Figure 15. Remove, step 2

A hole is created at the top of the heap
where the minimum element has been
removed in Figure 15. The size of the heap
has been diminished by one value.
Diminishing the size of the heap is illustrated
by the absence of the circle around the last
element (31).

Figure 16. Remove, step 3

The smaller of the two children is copied to
the hole created in the previous step. A new
hole is created where the child was.

Figure 17. Remove, step 4

Figure 18. Remove, step 5

13

16

19 68

65 26 32

14

21

31

19

16

19 6819

65 26 32

14

21

31

16

19 6819

65 26 32

14

21

31

16

19 68

65 26 32

14

21

31

19

16

19 68

65

26

32

14

21

31

19

Programming II Priority Queue (Heap)
CMSC 2613 Lecture 41

 7

Figure 16. class Heap constructor.

Figure 17. class Heap destructor.

Figure 18. class Heap member function Insert..

Figure 19. class Heap member function Remove.

Heap::Heap(int sz):count(0),size(sz)
{ H=new int[size];

H[0]=INT_MIN;
}

Heap::~Heap() { if (H) delete[] H; }

void Heap::Insert(int v)
{ if (IsFull()) throw HeapFullException();

int a=++count;
while (H[a/2]>v) {

H[a]=H[a/2];
a/=2;

}
H[a]=v;

}

int Heap::Remove(void)
{ if (IsEmpty()) throw HeapEmptyException();

int min=H[1];
int last=H[count--];
int a,child;
//--
//The correction a*2<=count (formerly a*2<count) is due to the indefatigable testing
//of Mr. Glenn Billings.
//--
for (a=1;a*2<=count;a=child) {

child=a*2;
if ((child!=count)&&(H[child+1]<H[child])) child++;
if (last>H[child]) H[a]=H[child]; else break;

}
H[a]=last;
return min;

}

