CMSC 2613 — Programming Il

Mr. Alan Turing

Author Identification Block

Author:
Student ID:
E-Mail:
Course:
CRN:
Project:
Due:
Account:

Mr. Alan Turing

*00000000
aturing@uco.edu

CMSC 2613 — Programming Il
21641, Spring, 2013

p09

April 22, 2013

tt000

Page 1 of 13
Cover Page

Scoring Block

Component

Available | Earned | Explanation

Compilation

Submission Instructions

Author Identification

Fragment 1 Analysis

Fragment 2 Analysis

Fragment 3 Analysis

Command Line

Output file

Fragment 1 Results

Fragment 2 Results

Fragment 3 Results

WIWIWINNINWWW [N
WIWIWINNINWWW [N

Total

N
(6,]
N
(5,]

mailto:aturing@uco.edu

CMSC 2123 - Discrete Structures
Mr. Alan Turing

Code Fragment 1 Analysis:

Page 2 of 13
Code Fragment 1 Analysis

C=Cpn+A=3+1=4

1. FindT(n)
int sum=0;
for (i=0;i<n;i++) {
int m=n;
while (m>1) m=m/3;
}
Line | Code Cost
1 int sum=0; 1
2 | intj=0; 1
3 | while (i<n) { n-1
a= z 1=n
i=0
4 int m=n; a
5 while (m>1) { n—1 llogz n|
b= Z 1
i=0 m=1
6 m=m/[3; 2b
7 } a
13 ++; a
14 |} 1
T(n) =3b+4a+3
n—1llogzn|
T(n) =SZ Z 1+4n+3
i=0_m=1
n—1 |logz n|
b= Z Z 1 =n|logz n|
i=0 m=1
T(n) = 3n|logzn|+4n+ 3
2. Find f(n)
f(m) = nllogz n|
3. FindC

CMRC 2123 - Discrete Structures

Mr. Alan Turing

4. Find ny

i |T(ng)| < C|f(ny)|

ii. 3ng|log; ng| + 419 + 3 < 4ny|log, n |

iii. 4ny + 3 < ng|log; ny|

Page 3 of 13

ny 4ny + 3 <

3 15 No 3

9 39 No 18
27 111 No 81
81 327 No 324
82 331 No 328
83 335 No 332
84 339 No 336
85 343 Yes 343

Conclusion: ny = 85

Therefore, T(n) is O(n|log; n|) because we have found witnesses, positive values, C = 4 and n, = 85

that make [T (n)| < C|f (n)| where f(n) = nllogsn| andn = n,.

CMSC 2123 - Discrete Structures Page 4 of 13
Mr. Alan Turing Code Fragment 2 Analysis

Code Fragment 2 Analysis:

CMSC 2123 - Discrete Structures Page 5 of 13
Mr. Alan Turing Code Fragment 3 Analysis

Code Fragment 3 Analysis:

CMSC 2123 - Discrete Structures Page 6 of 13
Mr. Alan Turing File p09.cpp

File p09.cpp
//
//File p09.cpp processes command line arguments and directs the execution
//of empirical and analytical measures of time complexity for code fragments
//given in programming project p09, CMSC 2613 - Programming ||
//
//File Description
//p09.cpp Processes command line arguments and directs execution of empirical
// and analytical measures of time complexity for code fragments
// given in programming project p09, CMSC 2613 - Programming Il
//F09.h Defines interfaces to time complexity measures
//F09.cpp Implements complexity measures.
//
//Author: Thomas R. Turner
//E-Mail: trturner@uco.edu
//Date: April, 2016
//
//Copyright April, 2016 by Thomas R. Turner.
//Do not reproduce without permission from Thomas R. Turner
//
//Standard C and C++ include files
//
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
using namespace std;
//
//Application include files
//
#include "F09.h"
//
//Function Title prints the title for a code fragment
//
void Title(int cf,ostream& o)
{ o<<endl

0 << "Code Fragment " << cf;

o << endl;

0 << setw(5) << "n";

0 << setw(15) << "empirical";

0 << setw(15) << "analytical";

CMRC 2123 - Discrete Structures
Mr. Alan Turing

/l

//Function Print prints n, empirical, and analytical values
//
void RowPrint(ostream& o,int n,int e,int a)
{ o<<endl

o << setw(5) << n;

0 << setw(15) << ¢;

0 << setw(15) << a;
}
//

//Function TimeComplexityMgr directs the measurement of empirical and
//analytical time complexity for code fragments 1, 2, and 3.
//
void TimeComplexityMgr(istream& il,istream& i2,istream& i3,ostream& o)
{ Title(1,0);
for (;;) {
intn;
i1>>n;
if (i1.eof()) break;
RowPrint(o,n,Empirical01(n),Analytical01(n));
}
0 << end|;
}
//

//A FileException is thrown when a file whose name appears on the
//command line cannot be opened.
//
struct FileException {
FileException(char* fn)
{ cout<<endl
cout << "File " << fn << " could not be opened.";
cout << endl;
}
2

Page 7 of 13

CMRC 2123 - Discrete Structures
Mr. Alan Turing

/l

//A CommandLineException is thrown when too many arguments appear on

//the command line.

/1

struct CommandLineException {
CommandLineException(int m, int a)

|5
//

//Function main processes command line arguments.

/1

{ cout<<endl

cout << "Too many file names on the command line.";

cout << endl;

cout << "A maximum of " << m << " file names can appear on the "

<< "command line.";

cout << endl;

cout << a << " file names were on the command line.";

cout << endl;

}

int main(int argc, char* argv[])

{

try {
char ifn1[255];
char ifn2[255];
char ifn3[255];
char ofn [255];
switch (argc) {

//Input file name 1
//Input file name 2
//Input file name 3
//Output file name

Page 8 of 13

case 1: //Prompt for all file names
cout << "Enter input file name 1: ";
cin >>ifnl;
cout << "Enter input file name 2: ";
cin >>ifn2;
cout << "Enter input file name 3: ";
cin >>ifn3;
cout << "Enter the output file name. ";
cin >> ofn;

break;

case 2: //Copy input file name 1 from argv. Prompt for the remainder of the file names.
strcpy(ifnd,argv[1]);

cout << "Enter input file name 2: ";

cin >>ifn2;

cout << "Enter input file name 3: ";

cin >>ifn3;

cout << "Enter the output file name. ";

cin >> ofn;
break;

CMRC 2123 - Discrete Structures
Mr. Alan Turing

}

Page 9 of 13

case 3: //Copy input file names 1 and 2 from argv. Prompt for the remainder of the file

// names.
strcpy(ifnl,argv[1]);
strcpy(ifn2,argv(2]);
cout << "Enter input file name 3: ";
cin >>ifn3;
cout << "Enter the output file name. ";
cin >> ofn;

break;

case 4: //Copy all input file names from argv. Prompt for the output file name.

strcpy(ifnl,argv[1]);
strcpy(ifn2,argv(2]);
strcpy(ifn3,argv(3]);
cout << "Enter the output file name. ";
cin >> ofn;
break;
case 5: //Copy all file names from argv.
strcpy(ifnd,argv[1]);
strcpy(ifn2,argv(2]);
strcpy(ifn3,argv(3]);
strcpy(ofn ,argv[4]);
break;
default: //Too many file names on the command line.
throw CommandLineException(4,argc-1);
break;
}
ifstream i1(ifn1); if (!i1) throw FileException(ifnl);
ifstream i2(ifn1); if (!i1) throw FileException(ifnl);
ifstream i3(ifn1); if (!i1) throw FileException(ifnl);
ofstream o (ofn); if (lo) throw FileException(ofn);

TimeComplexityMgr(il1,i2,i3,0);
o.close(); //Close the output file
i3.close();//Close input file 3
i2.close();//Close input file 2
il1.close();//Close input file 1

}catch(...) {

}

cout << endl;

cout << "Program terminated!";
cout << endl;

cout << "l won't be back!";

cout << endl;
exit(EXIT_FAILURE);

return O;

CMSC 2123 - Discrete Structures
Mr. Alan Turing

File F09.h
#ifndef FO9_h
#define FO9_h 1
//
//File F09.h Defines interfaces to time complexity measures
//
//File Description

//p09.cpp Processes command line arguments and directs execution of empirical
// and analytical measures of time complexity for code fragments

// given in programming project p09, CMSC 2613 - Programming Il

//F09.h Defines interfaces to time complexity measures

//F09.cpp Implements complexity measures.

//
//Author: Thomas R. Turner
//E-Mail: trturner@uco.edu
//Date: April, 2016

//
//Copyright April, 2016 by Thomas R. Turner.

//Do not reproduce without permission from Thomas R. Turner
//
//Standard C and C++ include files
//
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
using namespace std;
//
//
int Analytical01(int n);
int Empirical01(int n);
int Analytical02(int n);
int Empirical02(int n);
int Analytical03(int n);
int Empirical03(int n);
#endif

Page 10 of 13
File F09.h

CMSC 2123 - Discrete Structures
Mr. Alan Turing

File FO9.cpp
//
//File F09.cpp Implements complexity measures.
//
//File Description

//p09.cpp Processes command line arguments and directs execution of empirical
// and analytical measures of time complexity for code fragments

// given in programming project p09, CMSC 2613 - Programming Il

//F09.h Defines interfaces to time complexity measures

//F09.cpp Implements complexity measures.

//
//Author: Thomas R. Turner
//E-Mail: trturner@uco.edu
//Date: April, 2016

//
//Copyright April, 2016 by Thomas R. Turner.

//Do not reproduce without permission from Thomas R. Turner
//
//Standard C and C++ include files
//
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <cmath>
using namespace std;
//
//Application include files
//
#include "F09.h"
//
//
double log3(double x){return log(x)/log(3.0);}
//

//
int Analytical01(int n)
{ if (n>0)
return 3*n*(int)round(log3((double)n))+4*n+3;
else
return 3;

Page 11 of 13
File FO9.cpp

CMRC 2123 - Discrete Structures
Mr. Alan Turing

//
//
int Empirical01(int n)
{ intc=0;
int sum=0; C++;
int i=0; C++;
while (i<n) { C++;
int m=n; C++;
while (m>1) { C++;
m=m/3; c+=2;
} C++;
i++; C++;
} C++;
return c;
}
//
//

int Analytical02(int n){return 0;}

/1
/1

int Empirical02(int n){return 0;}
//

/1
int Analytical03(int n){return 0;}

/1
/l

int Empirical03(int n){return 0;}

Page 12 of 13

CMSC 2123 - Discrete Structures
Mr. Alan Turing

File p09make #
File p09make create executable file p09 from source files p09.cpp,

F09.h, and F09.cpp
H

Author: Thomas R. Turner
E-Mail: trturner@uco.edu

Date: April, 2016
H

™

Copyright April, 2016 by Thomas R. Turner.

Do not reproduce without permission from Thomas R. Turner.
H

™

Object files

obj = p09.0 F09.0

Bind object files into executable file p09
H

o

p09: ${obj}
g++ -0 p09 ${obj} -Im

H

Compile file p09.cpp

H

p09.0: p09.cpp FO9.h
g++-c-g p09.cpp

H

Compile file FO9.cpp

H

o

F09.0: F09.cpp F09.h
g++-c-g FO9.cpp

Page 13 of 13
File p09make

