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Algorithms are measured in terms of time and space complexity.  The time complexity of an 
algorithm is a measure of how much time is required to execute an algorithm for a given number 
of inputs.  The time complexity of an algorithm is measured by its rate of growth relative to 
standard functions.  Standard functions are given in Table 1. 

Table 1. Standard Time Complexity 
Functions 

Function Name 
c Constant 
log N Logarithmic 
log2 N Log-squared 
N Linear 
N log N  
N2 Quadratic 
N3 Cubic 
2N Exponential 

 Space complexity is similar to time complexity.  The space complexity of an algorithm is a measure 
of how much storage is required by the algorithm. 
 
Time and space can often be bartered.  It is possible to make an algorithm use more space and 
less time.   
 
Typically, computer scientists are interested in minimizing the time complexity of algorithms.  The 
economics of storage versus the speed of computers are the principal factor determining the 
focus on time complexity.  Memory has decreased in cost at an exponential rate for the past 50 
years whereas the cost of central processing unit time has not decreased at that rate.  The 
bottleneck is execution time.  Hence, computer scientists focus on the execution time of 
algorithms. 
 
An algorithm can be characterized by a timing function T(N). T(N) is a measure of how much time 
is required to execute an algorithm given N values.  For example, the timing function for a sort 
specifies the time required to sort N values.  The timing function for an algorithm that solves a 
system of linear equations specifies the time required solving N linear equations. 
 
If we say that an algorithm is O(N2), pronounced, oh of N squared, then what we mean is that the 
timing function for the algorithm will grow no faster than the square of the number of values it 
processes. 
 
Definition: ))(()( NfONT =  if there are positive constants c and n0 such that )()( NcfNT ≤  
when 0nN ≥ . 
 
Steps: 
1. Find T(N) for the algorithm. 
2. 𝑓𝑓(𝑁𝑁) is the fastest growing term in 𝑇𝑇(𝑁𝑁). 

3. Compute the minimum value for c, 
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4. Find ∆+= mincc  where ∆ is usually some small integer value like 1. 
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5. Find n0 by solving )()( 00 ncfnT ≤ .   
 
Example:  Consider the code fragment 
 
sum=0; 
for (a=N;a>0;a--) sum++; 

Line Code Cost 
1 sum=0; 1 
2 a=N; 1 
3 while(a>0) { N 
4   sum++; N 
5   a--; N 
6 } 1 
 Total 3N+3 
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4. 413 =+=c  
5. 3433 0 ==⇒=+ nNNN  
 
Example: 
Find T(N) for the algorithm 
 
sum=0; 
for (a=0;a<N;a++) sum++; 
 

Line Code Cost 
1 sum=0; 1 
2 a=0; 1 
3 while (a<N) { N 
4   sum++; N 
5   a++; N 
6 } 1 
 Total 3N+3 

 
int af01(int N) 
{ return 3*N+3; 
} 
 
int ef01(int N) 
{ int a,sum,c=0; 
 sum=0;   c++; 
 a=0;    c++; 
 while (a<N) {  c++; 
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  sum++;  c++; 
  a++;   c++; 
 }    c++; 
 return c; 
} 
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