
Programming II Time Complexity
CMSC 2613 Lecture 37

Algorithms are measured in terms of time and space complexity. The time complexity of an
algorithm is a measure of how much time is required to execute an algorithm for a given number
of inputs. The time complexity of an algorithm is measured by its rate of growth relative to
standard functions. Standard functions are given in Table 1.

Table 1. Standard Time Complexity
Functions

Function Name
c Constant
log N Logarithmic
log2 N Log-squared
N Linear
N log N
N2 Quadratic
N3 Cubic
2N Exponential

 Space complexity is similar to time complexity. The space complexity of an algorithm is a measure
of how much storage is required by the algorithm.

Time and space can often be bartered. It is possible to make an algorithm use more space and
less time.

Typically, computer scientists are interested in minimizing the time complexity of algorithms. The
economics of storage versus the speed of computers are the principal factor determining the
focus on time complexity. Memory has decreased in cost at an exponential rate for the past 50
years whereas the cost of central processing unit time has not decreased at that rate. The
bottleneck is execution time. Hence, computer scientists focus on the execution time of
algorithms.

An algorithm can be characterized by a timing function T(N). T(N) is a measure of how much time
is required to execute an algorithm given N values. For example, the timing function for a sort
specifies the time required to sort N values. The timing function for an algorithm that solves a
system of linear equations specifies the time required solving N linear equations.

If we say that an algorithm is O(N2), pronounced, oh of N squared, then what we mean is that the
timing function for the algorithm will grow no faster than the square of the number of values it
processes.

Definition:))(()(NfONT = if there are positive constants c and n0 such that)()(NcfNT ≤
when 0nN ≥ .

Steps:
1. Find T(N) for the algorithm.
2. 𝑓𝑓(𝑁𝑁) is the fastest growing term in 𝑇𝑇(𝑁𝑁).

3. Compute the minimum value for c,
)(
)(lim

Nf
NTc

nmim ∞→
=

4. Find ∆+= mincc where ∆ is usually some small integer value like 1.

 1

Programming II Time Complexity
CMSC 2613 Lecture 37

5. Find n0 by solving)()(00 ncfnT ≤ .

Example: Consider the code fragment

sum=0;
for (a=N;a>0;a--) sum++;

Line Code Cost
1 sum=0; 1
2 a=N; 1
3 while(a>0) { N
4 sum++; N
5 a--; N
6 } 1
 Total 3N+3

1. 33)(+= NNT
2. NNf =)(

3. 333limmin =
+

=
∞→ N

Nc
N

4. 413 =+=c
5. 3433 0 ==⇒=+ nNNN

Example:
Find T(N) for the algorithm

sum=0;
for (a=0;a<N;a++) sum++;

Line Code Cost
1 sum=0; 1
2 a=0; 1
3 while (a<N) { N
4 sum++; N
5 a++; N
6 } 1
 Total 3N+3

int af01(int N)
{ return 3*N+3;
}

int ef01(int N)
{ int a,sum,c=0;
 sum=0; c++;
 a=0; c++;
 while (a<N) { c++;

 2

Programming II Time Complexity
CMSC 2613 Lecture 37

 sum++; c++;
 a++; c++;
 } c++;
 return c;
}

 3

