
Programming II template class Tree (element implementation)
CMSC 2613 Lecture 36

 1

//--
//Class Tree defines a tree implemented using a dynamically allocated
//array.
//--
template <class T>
class Tree {
 struct Node {
 Node* LNode; //Left node (subtree)
 T Key; //Key
 Node* RNode; //Right node (subtree);
 //---
 //Constructor for struct Node
 //---
 Node(T K):LNode(0),Key(K),RNode(0){}
 //---
 //Prints the Key
 //---
 void Print(ostream& o){o << endl; o << Key;}
 //---
 //Prints the Key indented according to depth of the Node.
 //---
 void Print(ostream& o,int depth)
 { o << endl;
 for (int a=0;a<depth;a++) o << " ";
 o << Key;
 }
 };
 Node* Root; //Root of tree
 //---
 //Reclaim storage for all Nodes using a postorder traversal
 //---
 void Kill(Node* N){if(N==0) return;Kill(N->LNode);Kill(N->RNode);delete N;}
 //---
 //Insert a new Key
 //---
 Node* Insert(Node* N,T Key)
 { if(N==0) return new Node(Key);
 if (Key==N->Key) return N;
 if (Key<N->Key) {
 N->LNode=Insert(N->LNode,Key);
 } else {
 N->RNode=Insert(N->RNode,Key);
 }
 return N;
 }

Programming II template class Tree (element implementation)
CMSC 2613 Lecture 36

 2

 //---
 //Print the Keys using a postorder traversal
 //---
 void PostOrderPrint(ostream& o,Node* N)
 { if (N==0) return;
 PostOrderPrint(o,N->LNode);
 PostOrderPrint(o,N->RNode);
 N->Print(o);
 }
 //---
 //Print the Keys using a preorder traversal
 //---
 void PreOrderPrint(ostream& o,Node* N)
 { if (N==0) return;
 N->Print(o);
 PreOrderPrint(o,N->LNode);
 PreOrderPrint(o,N->RNode);
 }
 //---
 //Print the Keys using an inorder traversal
 //---
 void InOrderPrint(ostream& o,Node* N)
 { if (N==0) return;
 InOrderPrint(o,N->LNode);
 N->Print(o);
 InOrderPrint(o,N->RNode);
 }
 //---
 //Print the Keys using an inorder traversal and printing the keys
 //according to their depth
 //---
 void InOrderPrint(ostream& o,Node* N,int depth)
 { if (N==0) return;
 InOrderPrint(o,N->LNode,depth+1);
 N->Print(o,depth);
 InOrderPrint(o,N->RNode,depth+1);
 }
public:
 //---
 //Constructor
 //---
 Tree():Root(0){}
 //---
 //Destructor
 //---
 ~Tree(){Kill(Root);}

Programming II template class Tree (element implementation)
CMSC 2613 Lecture 36

 3

 //---
 //Invoke private member function Insert to Insert the Key
 //---
 void Insert(T Key){ Root=Insert(Root,Key); }
 //---
 //Invoke private member function PostOrderPrint to print the Keys
 //stored in the tree using a postorder traversal.
 //---
 void PostOrderPrint(ostream& o)
 { o << endl;
 o << "Postorder Traversal";
 PostOrderPrint(o,Root);
 o << endl;
 }
 //---
 //Invoke private member function PreOrderPrint to print the Keys
 //stored in the tree using a preorder traversal.
 //---
 void PreOrderPrint(ostream& o)
 { o << endl;
 o << "Preorder Traversal";
 PreOrderPrint(o,Root);
 o << endl;
 }
 //---
 //Invoke private member function InOrderPrint to print the Keys
 //stored in the tree using an inorder traversal.
 //---
 void InOrderPrint(ostream& o)
 { o << endl;
 o << "Inorder Traversal";
 InOrderPrint(o,Root);
 o << endl;
 }
 //---
 //Invoke private member function InOrderPrint(ostream& o,Node *N,int depth)
 //to format and print the Keys stored in the Tree using an inorder
 //traversal and indenting each node according to its depth
 //---
 void GraphPrint(ostream& o)
 { o << endl;
 o << "Graphical Representation";
 InOrderPrint(o,Root,0);
 o << endl;
 }
};

