Programming Il template class Tree (element implementation)

CMSC 2613 Lecture 36
/l
//Class Tree defines a tree implemented using a dynamically allocated
//array.
/l
template <class 7>
class Tree {
struct Node {
Node* LNode; //Left node (subtree)
T Key; //Key
Node* RNode; //Right node (subtree);
/l
//Constructor for struct Node
//
Node(T K):LNode(0),Key(K),RNode(0){}
/l
//Prints the Key
/l
void Print(ostream& o){o << endl; o << Key;}
/l
//Prints the Key indented according to depth of the Node.
/l
void Print(ostream& o,int depth)
{ o<<endl
for (int a=0;a<depth;a++) o << " *;
0 << Key;
}
b
Node* Root; //Root of tree
//
//Reclaim storage for all Nodes using a postorder traversal
//

void Kill(Node* N){if(N==0) return;Kill(N->LNode);Kill(N->RNode);delete N;}
/l
//Insert a new Key
/l
Node* Insert(Node* N,T Key)
{ if(N==0) return new Node(Key);
if (Key==N->Key) return N;
if (Key<N->Key) {
N->LNode=Insert(N->LNode,Key);
}else {
N->RNode=Insert(N->RNode,Key);
}

return N;




Programming Il template class Tree (element implementation)
CMSC 2613 Lecture 36

//
//Print the Keys using a postorder traversal
//
void PostOrderPrint(ostream& o,Node* N)
{ if (N==0) return;
PostOrderPrint(o,N->LNode);
PostOrderPrint(o,N->RNode);
N->Print(o);
}
//
//Print the Keys using a preorder traversal
//
void PreOrderPrint(ostream& o,Node* N)
{ if (N==0) return;
N->Print(o);
PreOrderPrint(o,N->LNode);
PreOrderPrint(o,N->RNode);
}
//
//Print the Keys using an inorder traversal
//
void InOrderPrint(ostream& o,Node* N)
{ if (N==0) return;
InOrderPrint(o,N->LNode);
N->Print(o);
InOrderPrint(o,N->RNode);
}
//

//Print the Keys using an inorder traversal and printing the keys

//according to their depth

//

void InOrderPrint(ostream& o,Node* N,int depth)

{ if (N==0) return;
InOrderPrint(o,N->LNode,depth+1);
N->Print(o,depth);
InOrderPrint(o,N->RNode,depth+1);

}

public:

/l

//Constructor

/

Tree():Root(0){}

//

//Destructor

//
~Tree(){Kill(Root);}




Programming Il

CMSC 2613

b

I/

//Invoke private member function Insert to Insert the Key

//
void Insert(T Key){ Root=Insert(Root,Key); }

//
//Invoke private member function PostOrderPrint to print the Keys
//stored in the tree using a postorder traversal.
//
void PostOrderPrint(ostream& o)
{ o<<endl
o << "Postorder Traversal";
PostOrderPrint(o,Root);
o<<endl

}
I/

//Invoke private member function PreOrderPrint to print the Keys
//stored in the tree using a preorder traversal.
/l
void PreOrderPrint(ostream& 0)
{ o<<endl
0 << "Preorder Traversal";
PreOrderPrint(o,Root);
o<<endl

}
I/

//Invoke private member function InOrderPrint to print the Keys
//stored in the tree using an inorder traversal.
//
void InOrderPrint(ostream& 0)
{ o<<endl
0 << "Inorder Traversal";
InOrderPrint(o,Root);
o<<endl;

}
I/

//Invoke private member function InOrderPrint(ostream& o,Node *N,int depth)
//to format and print the Keys stored in the Tree using an inorder
//traversal and indenting each node according to its depth
/l
void GraphPrint(ostream& o)
{ o<<endl
o0 << "Graphical Representation";
InOrderPrint(o,Root,0);
o<<endl;

}

template class Tree (element implementation)

Lecture 36



