
Programming II Trees
CMSC 2613 Lecture 34

 1

r

T T T1 2 k

Figure 1. Generic tree

1. Tree. A tree is a collection of nodes.
i. The collection can be empty.
ii. A tree consists of a distinguished node r, called the root, and zero or more nonempty

subordinate trees T1, T2, …, Tk,. Each subordinate tree is connected by a directed edge
from r to the root of the subordinate tree.

2. Child. The root of each subordinate tree, Ti, is a child of r.
3. Parent. The root, r, is the parent of each subordinate tree, Ti.
4. Path. A path from node n1 to nk is defined as a sequence of nodes n1, n2, …, nk such that ni is

the parent of ni+1 for ki 1 .
5. Length. The length of a path is the number of edges on the path. The length of the path is

one less than the number of nodes on the path, namely 1k .
6. Depth. The depth of a node ni is the length of the unique path from the root to ni. The root

is at depth zero (0).
7. Height. The height of a node ni is the length of the longest path from ni to a leaf. All leaves

are at height zero (0). The height of a tree is equal to the height of the root.

Figure 2. A tree
Examples from Figure 2.
1. deanne is a child of alice. ilse is a child of edith. ilse is the grandchild of alice.
2. edith is the parent of julia. edith is the grandparent of paula. edith is paula's grandmother.
3. The path from alice to qian is alice, edith, julia, qian.
4. The length of the path from alice to qian is three (3).
5. julia is at depth two (2) because there are two edges on the path from alice, the root, to julia.

juliailseheidi karen laura melissa

paula qian

edithdeanne fantine

nadine

gracecosettebridget

alice

Programming II Trees
CMSC 2613 Lecture 34

 2

6. julia is at height one (1) because the longest path to leaf is the path to paula. The path to
paula has one edge. The height of the tree in Figure 2 is the height of alice. The height of the
tree is three because the longest path from alice to a leaf contains three edges.

Figure 3. Binary tree

A binary tree is a tree in which no node can have more than two children.

Algorithms that operate on a binary tree are most efficient when the binary tree is completely
filled with the possible exception of the bottom level.

Let N be the number of the nodes in a completely filled binary tree. Let h be the height of the
tree.

122 1  hh N

For any tree that is entirely filled having the bottom level filled as well,

 


 
h

i

hiN
0

1 122

The number of comparisons to find a particular key is h+1, or   1log 2 N

The height of the tree  Nh 2log .

Level
(h)

0

1

2

3

4

5

Nodes
at

Level

1

2

4

8

16

32

Programming II Trees
CMSC 2613 Lecture 34

 3

Binary search trees have an order property. Values stored in nodes to the left of node ni are less
than the value in ni and values stored in nodes to the right of ni are greater than the value in ni.

zoe

lou

suedee

ann jan

Figure 4. Binary search tree

Every identifier to the left of lou is lexicographically less than lou and every identifier to the right
of lou is lexicographically greater than lou. "Lexicographically" can be translated to
"alphabetically."

Duplicates are prohibited. Every identifier in the binary tree is unique.

Node values are referred to as keys. Keys may have any type than can be compared using the
comparison operators <, =, and >.

Binary trees are implemented using structures for nodes and separately allocated storage for
identifiers as shown in Figure 5.

Node

KeyLnode Rnode

Node* Node*

Node

KeyLnode Rnode

Node* Node*

Node

KeyLnode Rnode

stringstring Node* Node*

Node

KeyLnode Rnode

Node* Node*

Node

KeyLnode Rnode

Node* Node*

Node

KeyLnode Rnode

stringNode* Node*

Tree

Root

Node*

lou

sue

zoe

dee

ann jan

string

string

string

Figure 5. Binary search tree

Programming II Trees
CMSC 2613 Lecture 34

 4

class Tree {
struct Node {

Node* LNode; //Left node (subtree)
string Key; //Key
Node* RNode; //Right node (subtree);
Node(string K);
void Print(ostream& o);
void Print(ostream& o,int depth);

};
Node* Root; //Root of tree
void Kill(Node* N); //Remove all nodes starting with the root
Node* Insert(Node* N,string Key);
void PostOrder(Node* N, ostream& o);
void PreOrder(Node* N, ostream& o);
void InOrder(Node* N, ostream& o);
void Graph(Node* N,int depth,ostream& o);
public:

Tree(); //Constructor
~Tree(); //Destructor
void Insert(string Key); //Insert a key
void PostOrder(ostream& o); //Print the tree using a postorder traversal
void PreOrder(ostream& o); //Print the tree using a preorder traversal
void InOrder(ostream& o); //Print the tree using an inorder traversal
void Graph(ostream& o); //Print the tree using an inorder traversal
 //where each node is indented according to its
 //depth

};

Programming II Trees
CMSC 2613 Lecture 34

 5

Tree traversals include preorder, inorder, and postorder.

A preorder traversal of an expression tree is used to emit an expression in prefix form.
Example: consider the expression in Figure 6 and the corresponding expression tree in Figure 7.
Prefix notation for the expression is shown in Figure 8.

(2 + 8) / 4 * (7 - 3)
Figure 6. Expression

Figure 7. Expression tree for (2+8)/4*(7-3)

* / + 2 8 4 - 7 3
Figure 8. Prefix notation for (2+8)/4*(7-3)

void Tree::PreOrder(ostream& o) {PreOrder(Root,o);}
void Tree::PreOrder(Node* N,ostream& o)
1. Return if the value of parameter N is 0.
2. Print the identifier referenced from this node.
3. Visit the subordinate tree on the left.
4. Visit the subordinate tree on the right.

An inorder traversal prints the values of nodes in ascending order. An inorder traversal of the
binary tree in Figure 4 produces the following list.

ann
dee
jan
lou
sue
zoe

By indenting the key according to the level of its node the following graphical presentation can be
obtained.

ann
dee

jan
lou

sue
zoe

*

/

+

2 8

4 7 3

-

Programming II Trees
CMSC 2613 Lecture 34

 6

void Tree::Graph(ostream& o){Graph(Root,0,o); }
void Tree::Graph(Node* N,int depth,ostream& o)
1. Return if the value of parameter N is 0.
2. Visit the subordinate tree on the left.
3. Print a new line
4. Indent according to the depth of the node.
5. Print the identifier referenced from this node.
6. Visit the subordinate tree on the right.

A postorder traversal of an expression tree is used to emit an expression in suffix notation.

A postorder traversal of the expression tree in Figure 7 produces the suffix form shown in Figure
9.

2 8 + 4 / 7 3 - *
Figure 9. Suffix form of (2+8)/4*(7-3)

void Tree::PostOrder(ostream& o) { PostOrder(Root,o); }
void Tree::PostOrder(Node*N,ostream& o)
1. Return if the value of parameter N is 0.
2. Visit the subordinate tree on the left.
3. Visit the subordinate tree on the right.
4. Print the identifier referenced from this node.

Node Constructor
Tree::Node::Node(string K):LNode(0),Key(K),RNode(0){}

Tree Constructor
Tree::Tree():Root(0) {}

Tree Destructor
Tree::~Tree(){Kill(Root);}

Tree Killer
void Tree::Kill(Node* N)
{ if (!N) return;

Kill(N->LNode);
Kill(N->RNode);
delete N;

}

Programming II Trees
CMSC 2613 Lecture 34

 7

Tree Insert
void Tree::Insert(string Key) { Root=Insert(Root,Key); }
Tree::Node* Tree::Insert(Node* N,string Key)
{ if (!N) return new Node(Key);

if (Key==N->Key) return N;
if ((Key<N->Key)
 N->LNode=Insert(N->LNode,Key);
else
 N->RNode=Insert(N->RNode,Key);
return N;

}

