Programming Il Trees
CMSC 2613 Lecture 34

w

T T

Figure 1. Generic tree

Tree. Atree is a collection of nodes.

i. The collection can be empty.

ii. A tree consists of a distinguished node r, called the root, and zero or more nonempty
subordinate trees Ty, Ty, ..., Tv,. Each subordinate tree is connected by a directed edge
from r to the root of the subordinate tree.

Child. The root of each subordinate tree, T;, is a child of r.

Parent. The root, r, is the parent of each subordinate tree, T..

Path. A path from node n; to ny is defined as a sequence of nodes ny, n,, ..., ng such that n; is

the parent of ni.ifor 1<1<K.

Length. The length of a path is the number of edges on the path. The length of the path is

one less than the number of nodes on the path, namely k —1.

Depth. The depth of a node n; is the length of the unique path from the root to ni. The root

is at depth zero (0).

Height. The height of a node n; is the length of the longest path from n; to a leaf. All leaves

are at height zero (0). The height of a tree is equal to the height of the root.

alice.

bridget cosette deanne edith fantine grace
heidi iIAe/ julia kaA ra melissa nadine
patla gian
Figure 2. A tree

Examples from Figure 2.

vk wn e

deanne is a child of alice. ilse is a child of edith. ilse is the grandchild of alice.

edith is the parent of julia. edith is the grandparent of paula. edith is paula's grandmother.
The path from alice to gian is alice, edith, julia, qgian.

The length of the path from alice to gian is three (3).

julia is at depth two (2) because there are two edges on the path from alice, the root, to julia.

Programming Il Trees
CMSC 2613 Lecture 34

6. julia is at height one (1) because the longest path to leaf is the path to paula. The path to
paula has one edge. The height of the tree in Figure 2 is the height of alice. The height of the
tree is three because the longest path from alice to a leaf contains three edges.

Level Nodes
(h) at
Level

Figure 3. Binary tree

A binary tree is a tree in which no node can have more than two children.

Algorithms that operate on a binary tree are most efficient when the binary tree is completely
filled with the possible exception of the bottom level.

Let N be the number of the nodes in a completely filled binary tree. Let h be the height of the
tree.

2" <N <21
For any tree that is entirely filled having the bottom level filled as well,
h
N :Zzl :2h+l_l
i=0

The number of comparisons to find a particular key is h+1, or |_|og2 NJ+1

The height of the tree h =|log, N |.

Programming Il Trees
CMSC 2613 Lecture 34

Binary search trees have an order property. Values stored in nodes to the /eft of node n; are less
than the value in nj and values stored in nodes to the right of ni are greater than the value in ni.

/\
VN

Every identifier to the left of lou is lexicographically less than lou and every identifier to the right
of lou is lexicographically greater than lou. ‘"Lexicographically" can be translated to
"alphabetically."

Flgure 4. Binary search tree

Duplicates are prohibited. Every identifier in the binary tree is unique.

Node values are referred to as keys. Keys may have any type than can be compared using the
comparison operators <, =, and >.

Binary trees are implemented using structures for nodes and separately allocated storage for
identifiers as shown in Figure 5.

Tree

Root
Node*

Node

Lnode Key Rnode

Node* | string | Node*

lou

Node Node
Lnode Key Rnode Lnode Key Rnode
Node* | string | Node* Node* | string Node*
dee sue
Node Node Node
Lnode Key Rnode Lnode Key Rnode Lnode Key Rnode
Node* string Node* Node* string Node* Node* string Node*
ann jan 108

Figure 5. Binary search tree

Programming Il Trees
CMSC 2613 Lecture 34

class Tree {

b

struct Node {
Node* LNode; //Left node (subtree)
string Key; //Key
Node* RNode; //Right node (subtree);
Node(string K);
void Print(ostream& 0);
void Print(ostream& o,int depth);

5
Node* Root; //Root of tree
void Kill(Node* N); //Remove all nodes starting with the root

Node* Insert(Node* N,string Key);

void PostOrder(Node* N, ostream& o);

void PreOrder(Node* N, ostream& o);

void InOrder(Node* N, ostream& 0);

void Graph(Node* N,int depth,ostream& o);

public:
Tree(); //Constructor
~Tree(); //Destructor
void Insert(string Key); //Insert a key

void PostOrder(ostream& 0); [/Print the tree using a postorder traversal
void PreOrder(ostream& o); //Print the tree using a preorder traversal

void /InOrder(ostream& o0); //Print the tree using an inorder traversal

void Graph(ostream& o); //Print the tree using an inorder traversal
//where each node is indented according to its
//depth

Programming Il Trees
CMSC 2613 Lecture 34

Tree traversals include preorder, inorder, and postorder.

A preorder traversal of an expression tree is used to emit an expression in prefix form.
Example: consider the expression in Figure 6 and the corresponding expression tree in Figure 7.
Prefix notation for the expression is shown in Figure 8.
(2+8)/4*(7-3)
Figure 6. Expression

N

3

+ ‘\4 7/’ |

/

2

/ /
8
Figure 7. Expression tree for (2+8)/4*(7-3)

*/+284-73

Figure 8. Prefix notation for (2+8)/4*(7-3)
void Tree::PreOrder(ostream& o) {PreOrder(Root,0);}
void Tree::PreOrder(Node* N,ostream& 0)
1. Return if the value of parameter N is 0.
2. Print the identifier referenced from this node.
3. Visit the subordinate tree on the left.
4. Visit the subordinate tree on the right.

An inorder traversal prints the values of nodes in ascending order. An inorder traversal of the
binary tree in Figure 4 produces the following list.

ann
dee
jan
lou
sue
zoe

By indenting the key according to the level of its node the following graphical presentation can be
obtained.

ann
dee
jan
lou
sue
zoe

Programming Il Trees
CMSC 2613 Lecture 34

void Tree::Graph(ostream& o){Graph(Root,0,0); }
void Tree::Graph(Node* N,int depth,ostream& o)
Return if the value of parameter N is 0.

Visit the subordinate tree on the left.

Print a new line

Indent according to the depth of the node.
Print the identifier referenced from this node.
Visit the subordinate tree on the right.

ok wneE

A postorder traversal of an expression tree is used to emit an expression in suffix notation.

A postorder traversal of the expression tree in Figure 7 produces the suffix form shown in Figure
9.

28+4/73-*%
Figure 9. Suffix form of (2+8)/4*(7-3)

void Tree::PostOrder(ostream& o) { PostOrder(Root,0); }
void Tree::PostOrder(Node*N,ostream& o)

1. Return if the value of parameter N is 0.

2. \Visit the subordinate tree on the left.

3. Visit the subordinate tree on the right.

4. Print the identifier referenced from this node.

Node Constructor
Tree::Node::Node(string K):LNode(0),Key(K),RNode(0){}

Tree Constructor
Tree::Tree():Root(0) {}

Tree Destructor
Tree::~Tree(){Kill(Root);}

Tree Killer

void Tree::Kill[Node* N)

{ if(IN) return;
Kill(N->LNode);
Kill(N->RNode);
delete N;

Programming Il
CMSC 2613

Tree Insert
void Tree::Insert(string Key) { Root=Insert(Root,Key); }
Tree::Node* Tree::Insert(Node* N,string Key)
{ if (IN) return new Node(Key);
if (Key==N->Key) return N;
if ((Key<N->Key)
N->LNode=Insert(N->LNode,Key);
else
N->RNode=Insert(N->RNode,Key);
return N;

Trees
Lecture 34

