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Figure 1.  Generic tree 
 

1. Tree.  A tree is a collection of nodes.  
i. The collection can be empty.   
ii. A tree consists of a distinguished node r, called the root, and zero or more nonempty 

subordinate trees T1, T2, …, Tk,.  Each subordinate tree is connected by a directed edge 
from r to the root of the subordinate tree. 

2. Child.  The root of each subordinate tree, Ti, is a child of r. 
3. Parent.  The root, r, is the parent of each subordinate tree, Ti. 
4. Path.  A path from node n1 to nk is defined as a sequence of nodes n1, n2, …, nk such that ni is 

the parent of ni+1 for ki 1 . 
5. Length.  The length of a path is the number of edges on the path.  The length of the path is 

one less than the number of nodes on the path, namely 1k . 
6. Depth.  The depth of a node ni is the length of the unique path from the root to ni.  The root 

is at depth zero (0). 
7. Height.  The height of a node ni is the length of the longest path from ni to a leaf.  All leaves 

are at height zero (0).  The height of a tree is equal to the height of the root. 
 

Figure 2. A tree 
Examples from Figure 2. 
1. deanne is a child of alice.   ilse is a child of edith.  ilse is the grandchild of alice.   
2. edith is the parent of julia.  edith is the grandparent of paula.  edith is paula's grandmother. 
3. The path from alice to qian is alice, edith, julia, qian. 
4. The length of the path from alice to qian is three (3). 
5. julia is at depth two (2) because there are two edges on the path from alice, the root, to julia. 
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6. julia is at height one (1) because the longest path to leaf is the path to paula.  The path to 
paula has one edge.  The height of the tree in Figure 2 is the height of alice.  The height of the 
tree is three because the longest path from alice to a leaf contains three edges. 

 

Figure 3. Binary tree 
 

A binary tree is a tree in which no node can have more than two children. 
 
Algorithms that operate on a binary tree are most efficient when the binary tree is completely 
filled with the possible exception of the bottom level.  
 
Let N be the number of the nodes in a completely filled binary tree.  Let h be the height of the 
tree. 

122 1  hh N   
 
For any tree that is entirely filled having the bottom level filled as well, 
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The number of comparisons to find a particular key is h+1, or   1log 2 N   

 

The height of the tree  Nh 2log . 
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Binary search trees have an order property.  Values stored in nodes to the left of node ni are less 
than the value in ni and values stored in nodes to the right of ni are greater than the value in ni. 
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Figure 4.  Binary search tree 
 
Every identifier to the left of lou is lexicographically less than lou and every identifier to the right 
of lou is lexicographically greater than lou.  "Lexicographically" can be translated to 
"alphabetically."    
 
Duplicates are prohibited.  Every identifier in the binary tree is unique.   
 
Node values are referred to as keys.  Keys may have any type than can be compared using the 
comparison operators <, =, and >. 
 
Binary trees are implemented using structures for nodes and separately allocated storage for 
identifiers as shown in Figure 5. 
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Figure 5.  Binary search tree 
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class Tree { 
struct Node { 

Node* LNode;                  //Left node (subtree) 
string Key;                    //Key 
Node* RNode;                  //Right node (subtree); 
Node(string K); 
void Print(ostream& o); 
void Print(ostream& o,int depth); 

}; 
Node* Root;                      //Root of tree 
void Kill(Node* N);             //Remove all nodes starting with the root 
Node* Insert(Node* N,string Key); 
void PostOrder(Node* N, ostream& o); 
void PreOrder(Node* N, ostream& o); 
void InOrder(Node* N, ostream& o); 
void Graph(Node* N,int depth,ostream& o); 
public: 

Tree();                          //Constructor 
~Tree();                         //Destructor 
void Insert(string Key);       //Insert a key 
void PostOrder(ostream& o); //Print the tree using a postorder traversal 
void PreOrder(ostream& o);  //Print the tree using a preorder traversal 
void InOrder(ostream& o);  //Print the tree using an inorder traversal 
void Graph(ostream& o);   //Print the tree using an inorder traversal 
                                   //where each node is indented according to its 
                                   //depth 

};
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Tree traversals include preorder, inorder, and postorder. 
 
A preorder traversal of an expression tree is used to emit an expression in prefix form. 
Example: consider the expression in Figure 6 and the corresponding expression tree in Figure 7.  
Prefix notation for the expression is shown in Figure 8. 

(2 + 8) / 4 * (7 - 3) 
Figure 6.  Expression 

 

Figure 7.  Expression tree for (2+8)/4*(7-3) 
 

* / + 2 8 4 - 7 3 
Figure 8.  Prefix notation for (2+8)/4*(7-3) 

void Tree::PreOrder(ostream& o) {PreOrder(Root,o);} 
void Tree::PreOrder(Node* N,ostream& o) 
1. Return if the value of parameter N is 0. 
2. Print the identifier referenced from this node. 
3. Visit the subordinate tree on the left. 
4. Visit the subordinate tree on the right. 
 
An inorder traversal prints the values of nodes in ascending order.  An inorder traversal of the 
binary tree in Figure 4 produces the following list. 
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By indenting the key according to the level of its node the following graphical presentation can be 
obtained. 
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void Tree::Graph(ostream& o){Graph(Root,0,o); } 
void Tree::Graph(Node* N,int depth,ostream& o) 
1. Return if the value of parameter N is 0. 
2. Visit the subordinate tree on the left. 
3. Print a new line 
4. Indent according to the depth of the node. 
5. Print the identifier referenced from this node. 
6. Visit the subordinate tree on the right. 
 
A postorder traversal of an expression tree is used to emit an expression in suffix notation. 
 
A postorder traversal of the expression tree in Figure 7 produces the suffix form shown in Figure 
9. 
 

2 8 + 4 / 7 3 - * 
Figure 9.  Suffix form of  (2+8)/4*(7-3) 

 
void Tree::PostOrder(ostream& o) { PostOrder(Root,o); } 
void Tree::PostOrder(Node*N,ostream& o) 
1. Return if the value of parameter N is 0. 
2. Visit the subordinate tree on the left. 
3. Visit the subordinate tree on the right. 
4. Print the identifier referenced from this node. 
 
 
Node Constructor 
Tree::Node::Node(string K):LNode(0),Key(K),RNode(0){} 
 
Tree Constructor 
Tree::Tree():Root(0) {} 
 
Tree Destructor 
Tree::~Tree(){Kill(Root);} 
 
Tree Killer 
void Tree::Kill(Node* N) 
{ if (!N) return; 

Kill(N->LNode); 
Kill(N->RNode); 
delete N; 

} 
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Tree Insert 
void Tree::Insert(string Key) { Root=Insert(Root,Key); } 
Tree::Node* Tree::Insert(Node* N,string Key) 
{ if (!N) return new Node(Key); 

if (Key==N->Key) return N; 
if ( (Key<N->Key) 
 N->LNode=Insert(N->LNode,Key); 
else 
 N->RNode=Insert(N->RNode,Key); 
return N; 

} 
 
 


