Programming Il template class List (array implementation)

CMSC 2613 Lecture 30
struct ListException {
ListException(char* m)
{ cout<<endl
cout<<"lamthelistand lam " << m<<".";
cout << endl;
}
b
template <class 7>
class List {
int size; //Number of available elements
int count; //Number of occupied elements
//Index of the element having the largest value
int cursor; //Index of the current element
T*L; //Points to storage for the List
/
//Creates a new list.
//
void New(int sz) {size=sz; count=0; cursor=0;L=new T[size];L[0]=MIN;}
//
//Returns the index of key or 0 if the key is not in the list.
//
int Index(T key)
{ int/o=1,hi=count;
while (lo<=hi) {
int m=(lo+hi)/2;
if (key==L[m]) return m;
if (key<L[m]) hi=m-1; else lo=m+1;
}
return 0;
}
protected:
const T MIN; //Minimum value of type T

Figure 1. template class List (array implementation)

Programming Il template class List (array implementation)
CMSC 2613 Lecture 30

public:
//
/Create an empty list.
//
void Empty(void){int sz=size; if (L) delete[] L; New(sz);}
//
//Constructor
//
List(T m,int sz=100):size(sz),count(0),cursor(0),MIN(m){L=new T[size];L[0]1=MIN;}
//
//Constructor. Read values of type T into the list from streami.
/
List(T m,istream& i,int sz=100):size(sz),count(0),cursor(0),MIN(m)
{L=new T[size];L[0]=MIN;Scan(i);}

//

//Destructor, reclaim storage.

//

~List(){if (L) delete[] L;}

//

//Determine if the List is empty

//

bool IsEmpty(void){return count<=0;}
//

//Determine if the List is full

//

bool IsFull(void){return count>size-1;}
//

//Insert an element on the List

//

void Insert(T key)
{ if (IsMember(key)) return;
if (IsFull()) throw ListException("full");
int i=++count;
for (;key<L[i-1);i--) L[i]=L[i-1];
L[i1=key;
}
/l
//Remove an element from the List
//
void Remove(T key)
{ inti=Index(key);
if (i==0) return;
for (;i<count;i++)L[i]=L[i+1];
count--;

Figure 1. template class List (array implementation) continued

Programming Il

CMSC 2613

template class List (array implementation)

Lecture 30

b

I/

//Print the list L={v1,v2,...,vn}

//
void Print(ostream& o,char* title)
{ o<<endl << title<<"{";
for (int a=1;a<=count;a++) {
if (a>1) o<<",";
0 << L[a];
}
0 << "}'<< endl;
}
//

//Read elements stored in stream i into the list.

I/

void Scan(istream& i)

{ for(;){
T key;
i >> key;
if (i.eof{()) break;
Insert(key);
}
}
//

//Assign the index of the smallest element to the cursor.

I/

void First(void){cursor=1;}

I/

//Move the cursor to the next larger element. Stop when the index

//of the cursor is just beyond the largest element.

I/

void Next(void){if (cursor<count+1) cursor++;}

I/

//Determine if the cursor is at the end of the list.

I/

bool IsEol(void){return cursor>count;}

I/

//Return the value of the key stored in the current element.

I/

T Member(void){if (cursor) return L[cursor];}

I/

//Determine if the key is a member of the list.

I/

bool IsMember(T key){return Index(key);}

Figure 1. template class List (array implementation) continued

