
Programming II template class List (array implementation)
CMSC 2613 Lecture 30

struct ListException {
ListException(char* m)
{ cout << endl;

cout << "I am the List and I am " << m << ".";
cout << endl;

}
};
template <class T>
class List {

int size; //Number of available elements
int count; //Number of occupied elements

//Index of the element having the largest value
int cursor; //Index of the current element
T* L; //Points to storage for the List
//---
//Creates a new list.
//---
void New(int sz) {size=sz; count=0; cursor=0;L=new T[size];L[0]=MIN;}
//---
//Returns the index of key or 0 if the key is not in the list.
//---
int Index(T key)
{ int lo=1,hi=count;

while (lo<=hi) {
int m=(lo+hi)/2;
if (key==L[m]) return m;
if (key<L[m]) hi=m-1; else lo=m+1;

}
return 0;

}
protected:

const T MIN; //Minimum value of type T
Figure 1. template class List (array implementation)

 1

Programming II template class List (array implementation)
CMSC 2613 Lecture 30

public:
//---
/Create an empty list.
//---
void Empty(void){int sz=size; if (L) delete[] L; New(sz);}
//---
//Constructor
//---
List(T m,int sz=100):size(sz),count(0),cursor(0),MIN(m){L=new T[size];L[0]=MIN;}
//---
//Constructor. Read values of type T into the list from stream i.
//---
List(T m,istream& i,int sz=100):size(sz),count(0),cursor(0),MIN(m)
{L=new T[size];L[0]=MIN;Scan(i);}
//---
//Destructor, reclaim storage.
//---
~List(){if (L) delete[] L;}
//---
//Determine if the List is empty
//---
bool IsEmpty(void){return count<=0;}
//---
//Determine if the List is full
//---
bool IsFull(void){return count>size-1;}
//---
//Insert an element on the List
//---
void Insert(T key)
{ if (IsMember(key)) return;

if (IsFull()) throw ListException("full");
int i=++count;
for (;key<L[i-1];i--) L[i]=L[i-1];
L[i]=key;

}
//---
//Remove an element from the List
//---
void Remove(T key)
{ int i=Index(key);

if (i==0) return;
for (;i<count;i++)L[i]=L[i+1];
count--;

}

Figure 1. template class List (array implementation) continued

 2

Programming II template class List (array implementation)
CMSC 2613 Lecture 30

//---
//Print the list L={v1,v2,...,vn}
//---
void Print(ostream& o,char* title)
{ o << endl << title << "{";

for (int a=1;a<=count;a++) {
if (a>1) o << ",";
o << L[a];

}
o << "}"<< endl;

}
//---
//Read elements stored in stream i into the list.
//---
void Scan(istream& i)
{ for (;;) {

T key;
i >> key;
if (i.eof()) break;
Insert(key);

}
}
//---
//Assign the index of the smallest element to the cursor.
//---
void First(void){cursor=1;}
//---
//Move the cursor to the next larger element. Stop when the index
//of the cursor is just beyond the largest element.
//---
void Next(void){if (cursor<count+1) cursor++;}
//---
//Determine if the cursor is at the end of the list.
//---
bool IsEol(void){return cursor>count;}
//---
//Return the value of the key stored in the current element.

 //---
T Member(void){if (cursor) return L[cursor];}
//---
//Determine if the key is a member of the list.
//---
bool IsMember(T key){return Index(key);}

};

Figure 1. template class List (array implementation) continued

 3

