Programming |1
CMSC 2613

1. An ordered list is a sequence of items in
some order. The list presented in this
discussion contains a sequence of integersin
ascending order.

2. A sentinel is employed to make the insertion
and removal of a value simpler. The
sentinel is the minimum value (MsMin) and
is placed at the beginning of an ascending
seguence.

3. An element in the list can be found using a
binary search. A key isgiven to the function
performing the search and the index of the
matching key is returned. If the list does not
contain an element that matches the key, an
invalid index is returned, usually zero (0).

4. A value is inserted in the list by shifting
elements larger than the input value toward
the end of thelist.

5. A vadue is removed from the list by
removing the element and shifting elements
larger than the element removed one
position toward the front of thelist.

6. Support for iterating through the list is
implemented by adding member cursor that
records the current position in the anchor for
thelist.

7. Member data for class List are shown in
Figure 1.

7.1. Member L points to a dynamically
alocated array used to store the
integersin thelist and the sentinel.

7.2. Member size records the number of
elements available to store integers on
the list. Member size includes the
storage allocated for the sentinel.

7.3. Member count records the number of
integers currently stored in the list.
Member count does not include the
sentinel.

7.4. Member cursor records the current
position.

7.5. Member MsMin is the value assigned
to the sentinel. Member MsMin is
initialized to the smallest integer
INT_MIN. Value INT_MIN isfoundin
#include <limits.h>.

7.6. Function Index returns the index of
parameter key or zero if the key is not
inthelist.

7.7. Constructor List(int) initializes class
List, alocates storage for the list, and
assign the sentinel to element L[0].

7.8. Destructor ~List() reclaims storage
allocated by the constructor.

79. The default constructor for class
ListFullException is called when no

List Iterators (array implementation)
Lecture29

more space is avalable to insert
another key.

7.10.The default constructor for class
ListRangeException is called when the
cursor is outside the valid range

1£ cursor £ count .

List
L size count cursor
int* int int int
4 0 0

0 MsMin

sizel

Figure 1. Member datafor classList.

classList{
int size;
int* L;
int count;
int cursor;
const int MsMin;
int Index(int key);
public:
List(int sz=100);
~List();
class ListFull Exception{};
class ListRangeException{};
bool IsFull(void);
void Insert(int key);
void Remove(int key);
void First(void);
bool IsEol(void);
void Next(void);
int ElementValue(void);
bool IsMember (int key);

Figure 2. classList.

7.11. Function IsFull determines if there is
space for another key.

7.12.Function Insert inserts a unique key
into thelist.

7.13. Function Remove deletes a key from
the list. If the key is not in the list no
action istaken.

Programming |1
CMSC 2613

7.14. Function First puts the cursor on the
smallest element in the list.

7.15. Function IsEol determines if the cursor
ispast the last element in the list.

7.16. Function Next puts the cursor on the
next largest element on the list.

7.17.Function ElementValue returns the
value of the current element as
determined by the cursor.

7.18.Function IsMember determines if
parameter key is a member of thelist.

List::List(int s2)
:size(sz),count(0),cursor(0)
,MsMin(INT_MIN)

{ L=newint[size]; }

Figure 3. Constructor List::List(int s2)

List:~List(){ if (L) deletel] L; }

Figure 4. Destructor List::~List()

void List::Insert(int key)
Discussion: Keys are shifted to make room for
the new key as shown in Figure 5.

0 1 2 3 4
-5|32(54 (101 oo

AN

101 [N N)

-5(32 (54

AN

-5132 54 (101 eoe

AN

-5 32 (54 (101 ese

-5112|32|54 (101 ese
Figureb. Insert key 12.

Codeto insert the second and subsequent keysis
givenin Figure 6.

List Iterators (array implementation)
Lecture29

int i=count++;

while (key < L[i-1]) {
L[i]=L[i-1];
i

}

L[i]1=key;

Figure6. Insert 2" and subsequent elements.

Each row of Figure 7 represents one iteration of

the while-statement in Figure 6.
i i-1 key | L[i-1] | key< i--
L[i-1]

4 3 12 101 yes 3

3 2 12 54 yes 2

2 1 12 32 yes 1

1 0 12 -5 no
Figure7.

Toinsert thefirst key requires that the while-test
be modified to include the guard shown in Figure
8.

int i=count++;

while (i>0 & & key <L[i-1]) {
L[i]=L[i-1];
i—;

}
L{i]=key;

Figure8. Insert with aguard

The guard can be removed by placing a sentinel
at the beginning of the list. A value smaller than
any key is placed in element zero of array L.
The shaded rectangle in element zero represents
the sentinel containing a smaller value than any
key in thelist as shown in Figure 9.

Programming |1
CMSC 2613

0 1 2 3 4 5 6
-5(32(54 (101 e

AN

-5(32(54 101 e

N

-5(32 54 (101 ¢oe

N

-5 32|54 (101 e e

-5112|32|54 (101 ese
Figure9. Insert key 12 in the list with a sentinel

Codeto insert akey in alist containing a sentinel
is given in Figure 10. The only difference
between the code in Figure 10 and the code in
Figure 6 is that member count is pre-incremented
rather than post-incremented.

void List::Insert(int key)
{ inti=++count;
while (key < L[i-1]) {
L[i]=L[i-1];
i--;
}
L[i]=key;
}

Figure 10. Insert with a sentinel
Now that we have the basic algorithm, we must
guard against certain boundary conditions: These
include:
1. Duplicate keys
2. Overfilling the array

Member function IsMember can be used to
determine if akey exists. The code in Figure 11
contains the guard against inserting a duplicate

key.

void List::Insert(int key)
{ if (IsMember(key)) return;
int i=++count;
while (key <L[i-1]) {
L[i]=L][i-1];
i--;

}
L{i]=key;

}

Figure11. Insert with guard against duplicate
keys

List Iterators (array implementation)
Lecture29

Member function IsFull is used to prevent
overfilling the array containing keys as shown in
Figure 12.

void List::Insert(int key)
{ if (IsMember(key)) return;
if (IsFull()) throw ListFull Exception();
int i=++count;
while (key < L[i-1]) {
L[i]=L[i-1];
i
}
L[i]=key;
}

Figure 12. Insert with guard against overfilling
array L.

