
Programming II List Iterators (array implementation)
CMSC 2613 Lecture 29

 1

1. An ordered list is a sequence of items in
some order. The list presented in this
discussion contains a sequence of integers in
ascending order.

2. A sentinel is employed to make the insertion
and removal of a value simpler. The
sentinel is the minimum value (MsMin) and
is placed at the beginning of an ascending
sequence.

3. An element in the list can be found using a
binary search. A key is given to the function
performing the search and the index of the
matching key is returned. If the list does not
contain an element that matches the key, an
invalid index is returned, usually zero (0).

4. A value is inserted in the list by shifting
elements larger than the input value toward
the end of the list.

5. A value is removed from the list by
removing the element and shifting elements
larger than the element removed one
position toward the front of the list.

6. Support for iterating through the list is
implemented by adding member cursor that
records the current position in the anchor for
the list.

7. Member data for class List are shown in
Figure 1.
7.1. Member L points to a dynamically

allocated array used to store the
integers in the list and the sentinel.

7.2. Member size records the number of
elements available to store integers on
the list. Member size includes the
storage allocated for the sentinel.

7.3. Member count records the number of
integers currently stored in the list.
Member count does not include the
sentinel.

7.4. Member cursor records the current
position.

7.5. Member MsMin is the value assigned
to the sentinel. Member MsMin is
initialized to the smallest integer
INT_MIN. Value INT_MIN is found in
#include <limits.h>.

7.6. Function Index returns the index of
parameter key or zero if the key is not
in the list.

7.7. Constructor List(int) initializes class
List, allocates storage for the list, and
assign the sentinel to element L[0].

7.8. Destructor ~List() reclaims storage
allocated by the constructor.

7.9. The default constructor for class
ListFullException is called when no

more space is available to insert
another key.

7.10. The default constructor for class
ListRangeException is called when the
cursor is outside the valid range

countcursor ≤≤1 .

List

sizeL count cursor

intint* int int

MsMin0

1

2

size-1

sz 0 0

Figure 1. Member data for class List.

Figure 2. class List.

7.11. Function IsFull determines if there is
space for another key.

7.12. Function Insert inserts a unique key
into the list.

7.13. Function Remove deletes a key from
the list. If the key is not in the list no
action is taken.

class List {
 int size;
 int* L;
 int count;
 int cursor;
 const int MsMin;
 int Index(int key);
public:
 List(int sz=100);
 ~List();
 class ListFullException{};
 class ListRangeException{};
 bool IsFull(void);
 void Insert(int key);
 void Remove(int key);
 void First(void);
 bool IsEol(void);
 void Next(void);
 int ElementValue(void);
 bool IsMember(int key);
};

Programming II List Iterators (array implementation)
CMSC 2613 Lecture 29

 2

7.14. Function First puts the cursor on the
smallest element in the list.

7.15. Function IsEol determines if the cursor
is past the last element in the list.

7.16. Function Next puts the cursor on the
next largest element on the list.

7.17. Function ElementValue returns the
value of the current element as
determined by the cursor.

7.18. Function IsMember determines if
parameter key is a member of the list.

Figure 3. Constructor List::List(int sz)

Figure 4. Destructor List::~List()

void List::Insert(int key)
Discussion: Keys are shifted to make room for
the new key as shown in Figure 5.

0 1 2 3

-5 32 54 101

4

1015432-5

-5 32 54 101

-5 32 54 101

-5 12 32 54 101

Figure 5. Insert key 12.

Code to insert the second and subsequent keys is
given in Figure 6.

Figure 6. Insert 2nd and subsequent elements.

Each row of Figure 7 represents one iteration of
the while-statement in Figure 6.

i i-1 key L[i-1] key <
L[i-1]

i--

4 3 12 101 yes 3
3 2 12 54 yes 2
2 1 12 32 yes 1
1 0 12 -5 no

Figure 7.

To insert the first key requires that the while -test
be modified to include the guard shown in Figure
8.

Figure 8. Insert with a guard

The guard can be removed by placing a sentinel
at the beginning of the list. A value smaller than
any key is placed in element zero of array L.
The shaded rectangle in element zero represents
the sentinel containing a smaller value than any
key in the list as shown in Figure 9.

List::List(int sz)
:size(sz),count(0),cursor(0)

 ,MsMin(INT_MIN)
{ L=new int[size]; }

List::~List(){ if (L) delete[] L; }

int i=count++;
while (key < L[i-1]) {
 L[i]=L[i -1];
 i--;
}
L[i]=key;

int i=count++;
while (i>0 && key < L[i-1]) {
 L[i]=L[i -1];
 i--;
}
L[i]=key;

Programming II List Iterators (array implementation)
CMSC 2613 Lecture 29

 3

-5 32 54 101

1015432-5

-5 32 54 101

-5 32 54 101

-5 12 32 54 101

0 1 2 3 4 5 6

Figure 9. Insert key 12 in the list with a sentinel

Code to insert a key in a list containing a sentinel
is given in Figure 10. The only difference
between the code in Figure 10 and the code in
Figure 6 is that member count is pre-incremented
rather than post-incremented.

Figure 10. Insert with a sentinel
Now that we have the basic algorithm, we must
guard against certain boundary conditions: These
include:

1. Duplicate keys
2. Overfilling the array

Member function IsMember can be used to
determine if a key exists. The code in Figure 11
contains the guard against inserting a duplicate
key.

Figure 11. Insert with guard against duplicate
keys

Member function IsFull is used to prevent
overfilling the array containing keys as shown in
Figure 12.

Figure 12. Insert with guard against overfilling
array L.

void List::Insert(int key)
{ int i=++count;

while (key < L[i-1]) {
 L[i]=L[i -1];
 i--;

}
L[i]=key;

}

void List::Insert(int key)
{ if (IsMember(key)) return;

int i=++count;
while (key < L[i-1]) {

 L[i]=L[i -1];
 i--;

}
L[i]=key;

}

void List::Insert(int key)
{ if (IsMember(key)) return;
 if (IsFull()) throw ListFullException();

int i=++count;
while (key < L[i-1]) {

 L[i]=L[i -1];
 i--;

}
L[i]=key;

}

