
Programming II class List (array implementation)
CMSC 2613 Lecture 27

 1

0

1

2

size-1

Lsize count cursor MIN

int int T* int T

MIN

List

Figure 1. Member data for class List.

1. An ordered list is a sequence of items in some order. The list presented in this discussion

contains a sequence of values of type T in ascending order.
2. A sentinel is employed to make the insertion and removal of a value simpler. The sentinel is

the minimum value (MIN) and is placed at the beginning of an ascending sequence.
3. An element in the list can be found using a binary search. A key is given to the function

performing the search and the index of the matching key is returned. If the list does not
contain an element that matches the key, an invalid index is returned, usually zero (0).

4. A value is inserted in the list by shifting elements larger than the input value toward the end
of the list.

5. A value is removed from the list by removing the element and shifting elements larger than
the element removed one position toward the front of the list.

6. Support for iterating through the list is implemented by adding member cursor that records
the current position in the anchor for the list.

7. Member data for class List are shown in Figure 1.
7.1. Member L points to a dynamically allocated array used to store values of type T in

the list and the sentinel.
7.2. Member size records the number of elements available to store values on the list.

Member size includes the storage allocated for the sentinel.
7.3. Member count records the number of integers currently stored in the list. Member

count does not include the sentinel.
7.4. Member cursor records the current position.
7.5. Member MIN is the value assigned to the sentinel. Member MIN is initialized to the

smallest value of type T. Maximum and minimum values for types native to C++
can be found in #include <limits>.

7.6. Constructor List(T m,int sz=100) initializes class List, allocates storage for the list,
and assigns the sentinel to element L[0].

7.7. Constructor List(T m,istream& i,int sz=100) initializes class List, allocates storage for
the list, and assigns the sentinel to element L[0] and scans input stream i for strings
having type T to store in elements of the list.

7.8. Destructor ~List() reclaims storage allocated by the constructor.
7.9. Function IsFull determines if there is space for another key.
7.10. Function Insert inserts a unique key into the list.

Programming II class List (array implementation)
CMSC 2613 Lecture 27

 2

7.11. Function Remove deletes a key from the list. If the key is not in the list no action is
taken.

7.12. Function Print prints values on the list separated by commas and enclosed in curly
braces as shown title {𝑖1, 𝑖2,⋯ , 𝑖𝑐𝑜𝑢𝑛𝑡}.

7.13. Function Scan scans input stream i for strings having type T to store in elements of
the list in ascending order.

7.14. Function First puts the cursor on the smallest element in the list.
7.15. Function IsEol determines if the cursor is past the last element in the list.
7.16. Function Next puts the cursor on the next largest element on the list.
7.17. Function Member returns the value of the current element as determined by the

cursor.
7.18. Function IsMember determines if parameter key is a member of the list.
7.19. Function Index returns the index of parameter key or zero if the key is not in the list.

struct ListException {

ListException(char* m);
};
template <class T>
class List {
 int size;
 int* L;
 int count;
 int cursor;
 const T MIN;
 int Index(int key);
public:
 List(T m,int sz=100);

List(T m,istream& i,int sz=100);
 ~List(T m);
 bool IsFull(void);
 void Insert(T key);
 void Remove(T key);

void Scan(istream& i);
void Print(ostream& o,char* title);

 void First(void);
 bool IsEol(void);
 void Next(void);
 T Member(void);
 bool IsMember(T key);
};

Figure 2. class List.

Programming II class List (array implementation)
CMSC 2613 Lecture 27

 3

List(T m,int sz=100):size(sz),count(0),cursor(0),MIN(m){L=new T[size];L[0]=MIN;}

Figure 3. Constructor List(T m,int sz=100)

List(T m,int sz=100):size(sz),count(0),cursor(0),MIN(m)
{ L=new T[size];L[0]=MIN;

Scan(i);
}

Figure 4. Constructor List(T m,istream& i,int sz=100).

~List(){if (L) delete[] L;}

Figure 5. Destructor ~List().

boolIsFull(void){return count>size-1;}

Figure 6. Function IsFull.

A sentinel is placed at the beginning of the list. The sentinel is the smallest value. The sentinel
is smaller than any value in the list. The sentinel is placed in element zero of array L. The shaded
rectangle in element zero represents the sentinel as shown in Figure 7.

-5 32 54 101

1015432-5

-5 32 54 101

-5 32 54 101

-5 12 32 54 101

0 1 2 3 4 5 6

Figure 7. Insert key 12

Programming II class List (array implementation)
CMSC 2613 Lecture 27

 4

Member function IsMember can be used to determine if a key exists. The code in figure 8
contains the guard against inserting a duplicate key.

Member function IsFull is used to prevent overfilling the array containing keys as shown in figure
8.

voidInsert(T key)
{ if (IsAMember(key)) return;

if (IsFull()) throw ListException("full");
int i;
for (i=++count;key<L[i-1];i--) L[i]=L[i-1];
L[i]=key;

}

Figure 8. Function Insert.

0 1 2 3 4

-5 12 32 54 101

-5 12 32 54 101

32

54

1015432-5

-5 32

32 54 101

54 101

101

5

-5

Figure 9. Remove key 12

void Remove(T key)
{ int i=Index(key);

if (i==0) return;
for (;i<count;i++)L[i]=L[i+1];
count--;

}

Figure 10. Function Remove..

Programming II class List (array implementation)
CMSC 2613 Lecture 27

 5

void Print(ostream& o,char* title)
{ o << endl << title << "{";

for (int a=1;a<=count;a++) {
if (a>1) o << ",";
o << L[a];

}
o << "}" << endl;

}

Figure 11. Function Print.
title {𝑖1 , 𝑖2,⋯ , 𝑖𝑐𝑜𝑢𝑛𝑡}

void Scan(istream& i)
{ for (;;) {

T key;
i >> key;
if (i.eof()) break;
Insert(key);

}
}

Figure 12. Function Scan.

void First(void){cursor=1;}

Figure 13. Function First.

void Next(void){if (cursor<count+1) cursor++;}

Figure 14. Function Next.

bool IsEol(void){return cursor>count;}

Figure 15. Function IsEol.

T Member(void){if (cursor) return L[cursor];}

Figure 16. Function Member.

Programming II class List (array implementation)
CMSC 2613 Lecture 27

 6

bool IsMember(T key){return Index(key);}

Figure 17. Function IsMember.

int Index(T key)
{ int lo=1,hi=count;

while (lo<=hi) {
int m=(lo+hi)/2;
if (key==L[m]) return m;
if (key<L[m]) hi=m-1; else lo=m+1;

}
return 0;

}

Figure 18. Function Index.

Programming II class List (array implementation)
CMSC 2613 Lecture 27

 7

