Programming Il template class Set (element implementation)
CMSC 2613 Lecture 26

#include <fstream>
#include <iomanip>
using namespace std;
template <class 7>
class List{

//

//Define class Element containing a key and links to smaller and larger elements
//
struct Element {

Element* smaller;

T key;

Element* larger;

Element(Element* s,T k,Element* I):smaller(s),key(k),larger(/){}

// -

//Print an element to aid in debugging this class
// -
void Print(ostream& o)
{ o<<endl
0 << “ smaller=" << hex << smaller;
o0 << “ key=" << decimal << key;
0 << “larger=" << hex << larger;

}

b

Element* largest;

/l

//The cursor is used by iterator functions First(), Next(), IsEol(), IsMember()

//and Member()

/l

Element* cursor;

/l

//Reclaim storage remaining on the list when the list goes out of scope

/l

void Kill(Element* €)

{ while (e->key'=MAX) {
Element* p=e;
e=e->larger;
delete p;

Figure 2. template <class T> class List (element implementation).




Programming Il template class Set (element implementation)
CMSC 2613 Lecture 26

I/l

//Create a sentinel

//

void Sentinel(void)
{ Element* n=new Element(0,MAX,0);
cursor=largest=n->smaller=n->larger=n;

}
//
//Create an empty list
//
void List::Empty(void){Kill(largest->larger); delete largest; Sentinel();}
//
//Print an element
//
void Print(ostream& o,Element* e){e->Print(0);}
protected:
const T MAX;
public:

//
//Constructor — create an empty list
//
List(T m):MAX(m){Sentinel();}
//
//Constructor — scan items in stream i into the list
//
List(T m,istream& i):MAX(m){Sentinel();Scan(i);}
//
//Reclaim storage when the list goes out of scope
//
~List(){Kill(largest->larger);delete largest;Sentinel();}
void Insert(T k) //Insert key k
{ Element* e=largest->larger;

while (k>e->key) e=e->larger;

if (k==e->key) return;

Element* n=new Element(e->smaller,k,e);

e->smaller->larger=n;

e->smaller=n;

Figure 2. template <class T> class List (element implementation) (continued).




Programming Il
CMSC 2613

template class Set (element implementation)
Lecture 26

void Remove(T k) //Remove key k

{

}

Element* e=largest->larger;
while (k>e->key) e=e->larger;
if (kle->key) return;
e->smaller->larger=e->larger;
e->larger->smaller=e->smaller;
delete ¢;

void Print(ostream& o,char* title)

{

o << endl;
0 << title << “{*;
Element* e=largest->larger;
for (int a=0;e->key!=MAX;a++){
if (>0) 0 << “,”;
0 << e->key;
e=e->larger;

}
0 << “}Y << endl;
}
void Scan(istream& i)
{ for(:X
T k;
i>>k;
if (i.eof()) break;
Insert(k);
}
}

Figure 2. template <class T> class List (element implementation) (continued).




Programming Il template class Set (element implementation)
CMSC 2613 Lecture 26

I/l

//Position the cursor on the first element of the list
//
void First(void){cursor=largest->larger;}
//
//Move the cursor to the next element on the list or remain at the end of the
//list.

/l
void Next(void){if (cursorl=largest) cursor=cursor->larger;}

/l
//Determine if the cursor is at the end of the list
//
bool IsEol(void){return cursor==largest;}
T Key(void){if (cursor) return cursor->key;}
/l
//Determine if input parameter k can be found on the list
//
bool IsMember(T k)
{ Element* e=largest->larger;
while (k > e->key) e=e->larger;
return k==e->key;

}
I/

//Return the value in the list referenced by the cursor

I/

T Member(void){if (cursor) return cursor->key;}

b

Figure 2. template <class T> class List (element implementation) (continued).




Programming Il template class Set (element implementation)
CMSC 2613 Lecture 26

template <class 7>
class Set: public List<T> {
public:
Set(T m):List<T>(m) {}
Set(T m,istream& i):List<T>(m,i) {}
void Union(Set& s1,5et& s2) //s1 U s2
{ List<T>:Empty();
for (s1.First();1s1.IsEol();s1.Next()) Insert(s1.Key());
for (s2.First();1s2.IsEol();s2.Next()) Insert(s2.Key());
}
void Intersection(Set& s1,5et& s2) //s1 ) s2
{ List<T>:Empty();
for (s1.First();'s1.IsEol();s1.Next()) {
if (s2.IsAMember(s1.Key())) Insert(s1.Key());
}

}
void Difference(Set& M,Set& S) /IM-=S={m|meM andm ¢ S}
{ List<T>:Empty();

for (M.First();!M.IsEol();M.Next()) Insert(M.Key());

Set<T> I(List<T>::MAX); l.Intersection(M,S);

for (I.First();!l.IsEol();I.Next()) Remove(l.Key());

b

Figure 2. template <class T> class Set (element implementation)




	List(T m):MAX(m){Sentinel();}

