
Programming II  template class Set (element implementation) 
CMSC 2613  Lecture 26   

 1 

#include <fstream> 
#include <iomanip> 
using namespace std; 
template <class T> 
class List{ 
 //---------------------------------------------------------------------------------------------------- 
 //Define class Element containing a key and links to smaller and larger elements 
 //---------------------------------------------------------------------------------------------------- 

struct Element { 
Element* smaller; 
T key; 
Element* larger; 
Element(Element* s,T k,Element* l):smaller(s),key(k),larger(l){} 

  //--------------------------------------------------------------------------------------------- 
  //Print an element to aid in debugging this class 
  //--------------------------------------------------------------------------------------------- 

void Print(ostream& o) 
{ o << endl; 

o << “ smaller=” << hex << smaller; 
o << “ key=” << decimal << key; 
o << “ larger=” << hex << larger; 

} 
}; 
Element* largest; 

 //---------------------------------------------------------------------------------------------------- 
 //The cursor is used by iterator functions First(), Next(), IsEol(), IsMember() 
 //and Member() 
 //---------------------------------------------------------------------------------------------------- 

Element* cursor;   
 //---------------------------------------------------------------------------------------------------- 
 //Reclaim storage remaining on the list when the list goes out of scope 
 //---------------------------------------------------------------------------------------------------- 

void Kill(Element* e) 
{ while (e->key!=MAX) { 

Element* p=e; 
e=e->larger; 
delete p; 

} 
} 
 

Figure 2. template <class T> class List (element implementation). 
 
  



Programming II  template class Set (element implementation) 
CMSC 2613  Lecture 26   

 2 

 //---------------------------------------------------------------------------------------------------- 
 //Create a sentinel 
 //---------------------------------------------------------------------------------------------------- 

void Sentinel(void) 
{ Element* n=new Element(0,MAX,0); 

cursor=largest=n->smaller=n->larger=n; 
} 

 //---------------------------------------------------------------------------------------------------- 
 //Create an empty list 
 //---------------------------------------------------------------------------------------------------- 

void List::Empty(void){Kill(largest->larger); delete largest; Sentinel();} 
 //---------------------------------------------------------------------------------------------------- 
 //Print an element 
 //---------------------------------------------------------------------------------------------------- 

void Print(ostream& o,Element* e){e->Print(o);} 
protected: 

const T MAX; 
public: 
 //---------------------------------------------------------------------------------------------------- 
 //Constructor – create an empty list 
 //---------------------------------------------------------------------------------------------------- 

List(T m):MAX(m){Sentinel();} 
 //---------------------------------------------------------------------------------------------------- 
 //Constructor – scan items in stream i into the list 
 //---------------------------------------------------------------------------------------------------- 

List(T m,istream& i):MAX(m){Sentinel();Scan(i);} 
 //---------------------------------------------------------------------------------------------------- 
 //Reclaim storage when the list goes out of scope 
 //---------------------------------------------------------------------------------------------------- 

~List(){Kill(largest->larger);delete largest;Sentinel();} 
void Insert(T k)  //Insert key k 
{ Element* e=largest->larger; 

while (k>e->key) e=e->larger; 
if (k==e->key) return; 
Element* n=new Element(e->smaller,k,e); 
e->smaller->larger=n; 
e->smaller=n; 

}   
Figure 2. template <class T> class List (element implementation) (continued). 

 
  



Programming II  template class Set (element implementation) 
CMSC 2613  Lecture 26   

 3 

void Remove(T k) //Remove key k 
{ Element* e=largest->larger; 

while (k>e->key) e=e->larger; 
if (k!e->key) return; 
e->smaller->larger=e->larger; 
e->larger->smaller=e->smaller; 
delete e; 

} 
 
void Print(ostream& o,char* title) 
{ o << endl; 

o << title << “{“; 
Element* e=largest->larger; 
for (int a=0;e->key!=MAX;a++){ 

if (a>0) o << “,”; 
o << e->key; 
e=e->larger; 

} 
o << “}” << endl; 

} 
void Scan(istream& i) 
{ for (;;){ 

T k; 
i >> k; 
if (i.eof()) break; 
Insert(k); 

} 
} 

Figure 2. template <class T> class List (element implementation) (continued). 
 
  



Programming II  template class Set (element implementation) 
CMSC 2613  Lecture 26   

 4 

 //-------------------------------------------------------------------------------------------------------- 
 //Position the cursor on the first element of the list 
 //-------------------------------------------------------------------------------------------------------- 

void First(void){cursor=largest->larger;} 
 //-------------------------------------------------------------------------------------------------------- 
 //Move the cursor to the next element on the list or remain at the end of the 
 //list. 
 //-------------------------------------------------------------------------------------------------------- 

void Next(void){if (cursor!=largest) cursor=cursor->larger;} 
 //-------------------------------------------------------------------------------------------------------- 
 //Determine if the cursor is at the end of the list 
 //-------------------------------------------------------------------------------------------------------- 

bool IsEol(void){return cursor==largest;} 
T Key(void){if (cursor) return cursor->key;} 

 //-------------------------------------------------------------------------------------------------------- 
 //Determine if input parameter k can be found on the list 
 //-------------------------------------------------------------------------------------------------------- 

bool IsMember(T k) 
{ Element* e=largest->larger; 

while (k > e->key) e=e->larger; 
return k==e->key; 

} 
 //-------------------------------------------------------------------------------------------------------- 
 //Return the value in the list referenced by the cursor 
 //-------------------------------------------------------------------------------------------------------- 

T Member(void){if (cursor) return cursor->key;} 
}; 

Figure 2. template <class T> class List (element implementation) (continued). 
 
  



Programming II  template class Set (element implementation) 
CMSC 2613  Lecture 26   

 5 

template <class T> 
class Set: public List<T> { 
public: 

Set(T m):List<T>(m) {} 
Set(T m,istream& i):List<T>(m,i) {} 
void Union(Set& s1,Set& s2)       //s1   s2   
{ List<T>::Empty(); 

for (s1.First();!s1.IsEol();s1.Next()) Insert(s1.Key()); 
for (s2.First();!s2.IsEol();s2.Next()) Insert(s2.Key()); 

} 
void Intersection(Set& s1,Set& s2)      //s1   s2 
{ List<T>::Empty(); 

for (s1.First();!s1.IsEol();s1.Next()) { 
if (s2.IsAMember(s1.Key())) Insert(s1.Key()); 

  } 
 } 

void Difference(Set& M,Set& S)      // MmmSM ∈=− |{ and }Sm∉  
{ List<T>::Empty(); 

for (M.First();!M.IsEol();M.Next()) Insert(M.Key()); 
Set<T> I(List<T>::MAX); I.Intersection(M,S); 
for (I.First();!I.IsEol();I.Next()) Remove(I.Key()); 

} 
}; 
 

Figure 2. template <class T> class Set (element implementation) 
 


	List(T m):MAX(m){Sentinel();}

