
Programming II template class List (element implementation)
CMSC 2613 Lecture 24

 1

template <class T>
class List {
 struct Element { //An element has

Element* smaller; //A pointer to the element having the next smaller key
T key; //The key itself
Element* larger; //A pointer to the element having the next larger key
Element(Element* s,T k,Element *l):smaller(s),key(k),larger(l){}

};
Element* largest; //Points to the sentinel
Element* cursor; //Points to the current element
void Kill(Element* e)
{ while (e->key!=MAX) {

Element* p=e;
e=e->larger;
delete p;

}
}
void Sentinel(void)
{ Element* n=new Element(0,MAX,0);

cursor=largest=n->smaller=n->larger=n;
}

protected:

const T MAX; //Maximum value in type T used as a sentinel
public:
 //--
 //Constructor – create an empty list having only the sentinel
 //--

List(T m):MAX(m){Sentinel();}
 //--
 //Constructor – Read input file stream i into the list.
 //--

List(T m,istream& i):MAX(m){Sentinel();Scan(i);}
 //--
 //Destructor
 //--

~List(){Kill(largest->larger); delete largest;}
 //--
 //Create an empty listg
 //--

void Empty(void){Kill(largest->larger); delete largest; Sentinel();}
Figure 1. class Set (element implementation)

Programming II template class List (element implementation)
CMSC 2613 Lecture 24

 2

void Insert(T k) //Insert a key
{ Element* e=largest->larger;

while (k > e->key) e=e->larger;
if (k == e->key) return;
Element* n=new Element(e->smaller,k,e);
e->smaller->larger=n;
e->smaller =n;

}
void Remove(T k) //Remove key k
{ Element* e=largest->larger;

while (k > e->key) e=e->larger;
if (k != e->key) return;
e->smaller->larger =e->larger ;
e->larger ->smaller=e->smaller;
delete e;

} //Print the list
void Print(ostream& o,const char* title)
{ o << endl << title << "{";

Element* e=largest->larger;
for (int a=0;e->key!=MAX;a++) {

if (a>0) o << ",";
o << e->key;
e=e->larger;

}
o << "}" << endl;

} //Scan items from input stream i into the list
void Scan(istream& i)
{ for (;;) {

T k;
i >> k;
if (i.eof()) break;
Insert(k);

}
}

Figure 1. template class List (element implementation) (continued)

Programming II template class List (element implementation)
CMSC 2613 Lecture 24

 3

 //--
 //Position the cursor on the first element of the list
 //--

void First(void){cursor=largest->larger;}
 //--
 //Move the cursor to the next element on the list or remain at the end of the
 //list.
 //--

void Next(void){if (cursor!=largest) cursor=cursor->larger;}
 //--
 //Determine if the cursor is at the end of the list
 //--

bool IsEol(void){return cursor==largest;}
T Key(void){if (cursor) return cursor->key;}

 //--
 //Determine if input parameter k can be found on the list
 //--

bool IsMember(T k)
{ Element* e=largest->larger;

while (k > e->key) e=e->larger;
return k==e->key;

}
 //--
 //Return the value in the list referenced by the cursor
 //--

T Member(void){if (cursor) return cursor->key;}
};

Figure 1. template class List (element implementation) (continued)

Programming II template class List (element implementation)
CMSC 2613 Lecture 24

 4

#ifndef List_h
#define List_h 1
#include <iostream>
#include <fstream>
#include <iomanip>
using namespace std;
//--
//Put the contents of figure 1 here
//--
#endif

Figure 2. File List.h.

#include <iostream>
#include <fstream>
#include <iomanip>
#include <limits>
using namespace std;
int main()
{ List <int> L(INT_MAX);

for (int a=0;a<20;a++) if(a%2) L.Insert(a);
L.Print(cout,"L=");
for (int b=0;b<10;b++) L.Remove(b);
L.Print(cout,"L=");
return 0;

}

Figure 3. File p02.cpp.
Example: Program p02 exercises template class List (element implementation). Odd integers

200: ≤≤ ii are inserted into List L. List L is printed. Odd integers 100: ≤≤ ii are removed
and the list is printed again.
Program p02 prints:

L={1,3,5,7,9,11,13,17,19}

L={1,3,5,7,9}

Program p02 consists of two source files, List.h and p02.cpp as given above.

