Programming Il template class List (element implementation)

CMSC 2613 Lecture 24
template <class 7>
class List {
struct Element { //An element has
Element* smaller; //A pointer to the element having the next smaller key
T key; //The key itself
Element* larger; //A pointer to the element having the next larger key
Element(Element* s,T k,Element *):smaller(s),key(k),larger(/){}
b
Element* largest; //Points to the sentinel
Element* cursor; //Points to the current element

void Kill(Element* e)

{ while (e->key!'=MAX) {
Element* p=¢;
e=e->larger;
delete p;

}

}

void Sentinel(void)
{ Element* n=new Element(0,MAX,0);
cursor=largest=n->smaller=n->larger=n;

}

protected:
const T MAX; //Maximum value in type T used as a sentinel

public:
//
//Constructor — create an empty list having only the sentinel
//
List(T m):MAX(m){Sentinel();}
//
//Constructor — Read input file stream i into the list.
//
List(T m,istream& i):MAX(m){Sentinel();Scan(i);}
//
//Destructor
//
~List(}{Kill(largest->larger); delete largest;}
//
//Create an empty listg

//
void Empty(void){Kill(largest->larger); delete largest; Sentinel();}

Figure 1. class Set (element implementation)




Programming Il
CMSC 2613

template class List (element implementation)

Lecture 24

void Insert(T k) //Insert a key
{ Element* e=largest->larger;
while (k > e->key) e=e->larger;
if (k == e->key) return;
Element* n=new Element(e->smaller,k,e);
e->smaller->larger=n;
e->smaller =n;
}
void Remove(T k) //Remove key k
{ Element* e=largest->larger;
while (k > e->key) e=e->larger;
if (k 1= e->key) return;
e->smaller->larger =e->larger ;
e->larger ->smaller=e->smaller;
delete ¢;
} //Print the list
void Print(ostream& o,const char* title)
{ o<<endl<<title<<"{";
Element* e=largest->larger;
for (int a=0;e->key!'=MAX;a++) {
if (a>0) 0<<",";
0 << e->key;
e=e->larger;

}
0 << "}" << endl;
} //Scan items from input stream i into the list
void Scan(istream& i)
{ for(;){
Tk;
i>>k;
if (i.eof()) break;
Insert(k);
}

Figure 1. template class List (element implementation) (continued)




Programming Il

CMSC 2613

template class List (element implementation)

Lecture 24

b

/1

//Position the cursor on the first element of the list

//

void First(void){cursor=largest->larger;}

//

//Move the cursor to the next element on the list or remain at the end of the

//list.
/l

void Next(void){if (cursorl=largest) cursor=cursor->larger;}

I/

//Determine if the cursor is at the end of the list

I/

bool /sEol(void){return cursor==largest;}
T Key(void){if (cursor) return cursor->key;}

I/

//Determine if input parameter k can be found on the list

I/

bool IsMember(T k)

{ Element* e=largest->larger;
while (k > e->key) e=e->larger;
return k==e->key;

}

//

//Return the value in the list referenced by the cursor

I/

T Member(void){if (cursor) return cursor->key;}

Figure 1. template class List (element implementation) (continued)




Programming Il template class List (element implementation)
CMSC 2613 Lecture 24

#ifndef List_h
#define List_ h1
#tinclude <ijostream>
#tinclude <fstream>
#include <iomanip>
using namespace std;

/l
//Put the contents of figure 1 here

/l
#endif

Figure 2. File List.h.

#tinclude <ijostream>

#include <fstream>

#include <iomanip>

#include </imits>

using namespace std;

int main()

{ List<int> L(INT_MAX);
for (int a=0;a<20;a++) if(a%2) L.Insert(a);
L.Print(cout,"L=");
for (int b=0;b<10;b++) L.Remove(b);
L.Print(cout,"L=");
return 0;

Figure 3. File p02.cpp.
Example: Program p02 exercises template class List (element implementation). Odd integers
1:0<1i<20 areinserted into List L. List L is printed. Odd integers i:0 <1i<10are removed
and the list is printed again.
Program p02 prints:

L={1,3,5,7,9,11,13,17,19}
L={1,3,5,7,9}

Program p02 consists of two source files, List.h and p02.cpp as given above.




