Programming |1 class List (element implementation)

CMSC 2613 Lecture22
List
largest
Element*
Element
smaller key larger
Element* int Element*
MrBig
Element
smaller key larger
Element* int Element*
1024 I
Element
smaller key larger
Element* int Element*
512 I
Element
smaller key larger
Element* int Element*
| 1 '

Figurel. Ordered circular linked-list with sentinel.

classList{
struct Element {
Element* smaller;
int key;
Element* larger;
Element(int k);
Element(int k,Element* s,Element* I);
3
Element* largest;
const int MrBig;

void Kill(Element* e);
public:

List();

~List();

void Insert(int key);

void Remove(int key);

Figure?2. classList.

Programming |1

class List (element implementation)

CMSC 2613 Lecture22
List::Element:: Element(int k):key(k) {}
List::Element:: Element(Element* s, int k,Element* |):smaller(s),key(k),larger(l) {}
Figure 2. Constructors for struct Element.
List List
largest largest
Element* Element*
Element
smaller key larger
Element* int Element*
MrBig !
A
Before After
Figure 3. Diagram of constructor List()
List::List():MrBig(INT_MAX)
{ Element* e=new Element(MrBiQ);
largest=e->smaller=e->larger=e;
}
Figure 4. Code for constructor List()
List::List()
1. Initialize member MrBig to INT_MAX. INT_MAX isthelargest integer value. INT_MAX s defined in
<limits.h>

2. Intheremaining steps allocate and initialize the sentinel element.

3. Declareloca variable e of type Element*.

4. Allocate storage for anew element initializing Element member key to MrBig. Assign the pointer to
the new element to variablee.

5. Tomakethelist circular assign the address of the new element to Element memberssmaller and
larger. The address of the new element is stored in variable e.

6. Bindthe sentinel element to the list by assigning the address of the sentinel created in steps 3, 4, and 5
to List member largest. The address of the new element is stored in variable e.

Programming |1
CMSC 2613

List

List

class List (element implementation)

Figure5. Diagram of member function Insert

largest largest
Element* Element*
Element Element
smaller key larger smaller key larger
Element* int Element* Element* int Element*
MrBig T MrBig T
Element Element e
smaller key larger smaller key larger Ement®
Element* int Element* Element* int Element*
Hiomest n
smalier lmy L [Elomoat™
Hlamesk™ [Henen®
51 T
Element Element
smaller key larger smaller key larger
Element* int Element* Element* int Element*
256 I 256
Element Element
smaller key larger smaller key larger
Element* int Element* Element* int Element*
| 1 I | 1 I
Before After

Lecture 22

void List: :Insert(int key)

e->smaller->larger=n;
e->smaller=n;

{ Element* e=largest->larger;
while (key>e->key) e=e->larger;
if (key==e->key) return;
Element* n=new Element(key,e->smaller e);

voidList::Insert(int key)

Figure6. Code for member function Insert

1. Searchthelist, starting with the smallest element, until an element just larger or, possibly equal, to the
key isfound. The sentinel at the largest end of the list guarantees that the search will find an element

larger than the input key.

1.1. Findthe smallest element on thelist. The element larger than the largest element is the smallest

element.

1.2. Search thelist moving from the smallest element to an element containing akey just larger than
the input key. Element member larger points to the next larger element. Traverse thelist by
assigning the value of Element member larger to local variablee. Making sure that the value of

Programming |1 class List (element implementation)
CMSC 2613 Lecture22

the input parameter key is greater than Element member key guarantees that the search will stop.
The search will stop on the sentinel if nowhere else.

2. Compare input parameter key against the key in the element found in the search. If thetwo keysare
equal return. Duplicate keys are not permitted.

3. Atthispoint we are sure that the value of the input parameter key isunique. Further we are sure that
local variable e pointsto an element having akey just larger than the value of the input parameter key.

4. Create anew element and bind the new element to the list.

4.1. Initialize new Element member key to the value of the input parameter key.

4.2. Initialize new Element member smaller to point to the element just smaller than the element
referenced by local variable e. Make the new element point to the element just smaller than the
element found in the search.

4.3. Initialize new Element member larger to point to the element found in the search: it is, as
previously declared, just larger than the value of the input parameter key.

5. Bindthelist to the new element. Sincethelistisadoubly linked list, there are two membersin the list
that need to be changed. Member smaller in some element needs to be changed to point to the new
element. Member larger in some element needs to be changed to point to the new element.

5.1. Find the element just smaller than the element found by the search (e->smaller). Member larger
in that element (e->larger->smaller) must now point to the new element.

5.2. Find the element (e) just larger than the new element. That element isthe element found in the
search. Member smaller (e->smaller) must be changed to point to the new element.

Programming |1

CMSC 2613

Elemant*

List
largest
Element*
- ! []
Element
smaller key larger
Element* int Element*
MrBig !
A
y
Element
smaller key larger
Element* int Element*
1024 !
A
Blement
smaller | key Inrger
Element* mt Element* |
512 !
A
y
Element
smeller key lerger
Hlement* int Element*
| 256 !
Element
smaller key larger
Element* int Element*
1 I
(I
Before

class List (element implementation)

Lecture 22

List

largest

Element*

Element
smaller key larger
Element* int Element*
MrBig !
A
A
Element
smaller key larger
Element* int Element*

Element
smaller key larger
Element* int Element*
[256
Element
smaller key larger
Element* int Element*
1 [
After

Figure 7. Diagram of member function Remove

Programming |1 class List (element implementation)
CMSC 2613 Lecture22

void List::Remove(int key){ ... }

Figure 8. Code for member function Remove

voidList::Remove(int key)

1. Searchthelist, starting with the smallest element, until an element just larger or, possibly equal, to the
key isfound. The sentinel at the largest end of the list guarantees that the search will find an element
larger than the input key.

1.1. Findthe smallest element onthelist. The element larger than the largest element is the smallest
element.

1.2. Searchthelist moving from the smallest element to an element containing akey just larger than
the input key. Element member larger points to the next larger element. Traverse thelist by
assigning the value of Element member larger to local variablee. Making sure that the value of
the input parameter key is greater than Element member key guarantees that the search will stop.
The search will stop on the sentinel if nowhere else.

2. Compare input parameter key against the key in the element found in the search. If the two keysare
not equal return. An element having akey equal to the input parameter key does not exist.

3. Atthispoint we are sure that the search has resulted in finding the element we wish to delete.

4. Bindthe smaller element to the larger and vice versa so that the element found by the search is freed
from list.

4.1. Bindthe smaller element to the larger. The smaller element ise->smaller. Member larger must
be bound to the larger element. The larger element ise->larger.

4.2. Bindthe larger element to the smaller. Thelarger element ise->larger. Member smaller must be
bound to the smaller element. The smaller element ise->smaller.

Programming |1 class List (element implementation)

CMSC 2613 Lecture22
@ (b) (©)
List List List
largest largest largest
Element* Element* Element*

Element Element
smaller key larger smaller key larger
Element* int Element* Element* int Element*
MrBig | MrBig I
7Y l
Element
smaller key larger
Element* int Element*
1024 l
y
Element
smaller key larger
Element* int Element*
| 512 I

l |
| T

Element
smaller key larger
Element* int Element*
1 I
Figure9. Diagram for the destructor ~List()

List::~List()
{ Kill(largest->larger);

delete largest;
}

Figure 10. Member function~List()
List::~List()

1. Member functionKill removes all elements on the list except the sentinel. Figure 9 (a) showsthelist
before function Kill is called and Figure 9 (b) showsthe list after the Kill returns.

2. After all elements are removed except the sentinel, remove the sentinel also. Figure 9 (c) showsthe
list after the sentinel has been removed.

Programming |1 class List (element implementation)

CMSC 2613 Lecture22
List List List
largest lorgedt lergest
Element* Element* Element*
1 . 1] 1]
Element Element Element
smaller | key larger smaller key larger smaller ey lorger
Element* int Element* Element* int Element* Element* int Element*
MrBig U MrBig U MrBig U
Element Element Element
smaller | key larger smaller key larger smaller ey lorger
Element* int Element* Element* int Element* Element* int Element*
1024 T 1024 T 100 T
Element Element Element
smaller | key arger maller key larger smaller ey lorger
Element* int Element* Element* int Element* Element* int Element*
512] 512]' |l 512]'
Element e Element 3 Element
smaller | key larger Element* smaller key larger Element* smaller ey lorger
Element* int Element* Element* int Element* Element* int Element*
2] 2]I |l 2
e Element b Element D b
Element* smaller | key larger Element* smaller key larger Element* Element*
Element* int Element* Element* int Element*
| 1) | 1 J

(@) (b) ©

Figure11l. Diagram for member function Kill

void List: :Kill(Element*) { ... }

Figure 12. Member functionKill
void List::~Kill (Element* €)
1. Parameter e pointsto the smallest element when functionKill is called.
2. Thewhile-statement iterates through all elements on the list except the sentinel.

3. After entering the body of the while-statement local variablep is assigned to point to the same element
as parameter e. Figure 11 (a) depictsthelist just after the body of the while-statement has been entered

and parameter e pointsto the first element to be removed.

4. Parameter e is advanced to the next larger element as shown in Figure 11 (b) leaving local variable p to

point to the smaller element.
5. Local variable p is used to remove the element it pointsto as shown in Figure 11 (c).
6. Local variable p goes out of scope at the end of the while-statement body.

7. Theforegoing process defined by steps 3 through 6 is repeated on all the remaining elements except

the sentinel.

