
Programming II  class List (element implementation) 
CMSC 2613  Lecture 22 

 1 

 
List

largest

Element*

Element

keysmaller larger

intElement* Element*

MrBig

1

Element

smaller key larger

intElement* Element*

1024

Element

smaller key larger

intElement* Element*

512

Element

smaller key larger

intElement* Element*

 

Figure 1.  Ordered circular linked-list with sentinel. 

Figure 2.  class List. 

class List { 
 struct Element { 
  Element* smaller; 
  int key; 
  Element* larger; 
  Element(int k); 
  Element(int k ,Element* s,Element* l); 
 }; 
 Element* largest; 
 const int MrBig; 
  
 void Kill(Element* e); 
public: 
 List(); 
 ~List(); 
 void Insert(int key); 
 void Remove(int key); 
}; 



Programming II  class List (element implementation) 
CMSC 2613  Lecture 22 

 2 

Figure 2. Constructors for struct Element. 
 

Element

keysmaller larger

intElement* Element*

MrBig

List

largest

Element*

List

largest

Element*

AfterBefore  
Figure 3.  Diagram of constructor List() 

 

Figure 4. Code for constructor List() 
 
List::List() 
1. Initialize member MrBig to INT_MAX .  INT_MAX  is the largest integer value.  INT_MAX is defined in 

<limits.h>  
2. In the remaining steps allocate and initialize the sentinel element. 
3. Declare local variable e  of type Element*.  
4. Allocate storage for a new element initializing Element member key to MrBig.  Assign the pointer to 

the new element to variable e. 
5. To make the list circular assign the address of the new element to Element members smaller and 

larger.  The address of the new element is stored in variable e. 
6. Bind the sentinel element to the list by assigning the address of the sentinel created in steps 3, 4, and 5 

to List member largest.  The address of the new element is stored in variable e. 
 

List::List():MrBig(INT_MAX) 
{ Element* e=new Element(MrBig); 
 largest=e->smaller=e->larger=e; 
} 

List::Element::Element(int k):key(k) {} 
List::Element::Element(Element* s, int k ,Element* l):smaller(s),key(k),larger(l) {} 



Programming II  class List (element implementation) 
CMSC 2613  Lecture 22 

 3 

Element

keysmaller larger

intElement* Element*

MrBig

List

largest

Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

1024

256

1

Element

keysmaller larger

intElement* Element*

MrBig

List

largest

Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

1024

256

1

Before After  
Figure 5.  Diagram of member function Insert 

 
  

Figure 6.  Code for member function Insert 
void List::Insert(int key) 
1. Search the list, starting with the smallest element, until an element just larger or, possibly equal, to the 

key is found.  The sentinel at the largest end of the list guarantees that the search will find an element 
larger than the input key. 
1.1. Find the smallest element on the list.  The element larger than the largest element is the smallest 

element. 
1.2. Search the list moving from the smallest element to an element containing a key just larger than 

the input key.  Element member larger points to the next larger element. Traverse the list by 
assigning the value of Element member larger to local variable e.  Making sure that the value of 

void List::Insert(int key)  
{    Element* e=largest->larger; 
     while (key>e->key) e=e->larger; 
     if (key==e->key) return; 
     Element* n=new Element(key,e->smaller,e); 
     e->smaller->larger=n; 
     e->smaller=n; 
} 



Programming II  class List (element implementation) 
CMSC 2613  Lecture 22 

 4 

the input parameter key is greater than Element member key guarantees that the search will stop.  
The search will stop on the sentinel if nowhere else.  

2. Compare input parameter key against the key in the element found in the search.  If the two keys are 
equal return.  Duplicate keys are not permitted. 

3. At this point we are sure that the value of the input parameter key is unique.  Further we are sure that 
local variable e points to an element having a key just larger than the value of the input parameter key. 

4. Create a new element and bind the new element to the list. 
4.1. Initialize new Element member key to the value of the input parameter key. 
4.2. Initialize new Element member smaller to point to the element just smaller than the element 

referenced by local variable e.  Make the new element point to the element just smaller than the 
element found in the search. 

4.3. Initialize new Element member larger to point to the element found in the search: it is, as 
previously declared, just larger than the value of the input parameter key. 

5. Bind the list to the new element.  Since the list is a doubly linked list, there are two members in the list 
that need to be changed.  Member smaller in some element needs to be changed to point to the new 
element.  Member larger in some element needs to be changed to point to the new element. 
5.1. Find the element just smaller than the element found by the search (e->smaller).  Member larger 

in that element (e->larger->smaller) must now point to the new element. 
5.2. Find the element (e) just larger than the new element.  That element is the element found in the 

search.  Member smaller (e->smaller) must be changed to point to the new element. 



Programming II  class List (element implementation) 
CMSC 2613  Lecture 22 

 5 

 
 

Element

keysmaller larger

intElement* Element*

MrBig

List

largest

Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

1

Element

keysmaller larger

intElement* Element*

MrBig

List

largest

Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

1024

256

1

Before After
Figure 7.  Diagram of member function Remove 



Programming II  class List (element implementation) 
CMSC 2613  Lecture 22 

 6 

 

Figure 8.  Code for member function Remove 
void List::Remove(int key) 
1. Search the list, starting with the smallest element, until an element just larger or, possibly equal, to the 

key is found.  The sentinel at the largest end of the list guarantees that the search will find an element 
larger than the input key. 
1.1. Find the smallest element on the list.  The element larger than the largest element is the smallest 

element. 
1.2. Search the list moving from the smallest element to an element containing a key just larger than 

the input key.  Element member larger points to the next larger element. Traverse the list by 
assigning the value of Element member larger to local variable e.  Making sure that the value of 
the input parameter key is greater than Element member key guarantees that the search will stop.  
The search will stop on the sentinel if nowhere else.  

2. Compare input parameter key against the key in the element found in the search.  If the two keys are 
not equal return.  An element having a key equal to the input parameter key does not exist. 

3. At this point we are sure that the search has resulted in finding the element we wish to delete. 
4. Bind the smaller element to the larger and vice versa so that the element found by the search is freed 

from list. 
4.1. Bind the smaller element to the larger.  The smaller element is e->smaller.  Member larger must 

be bound to the larger element.  The larger element is e->larger. 
4.2. Bind the larger element to the smaller.  The larger element is e->larger.  Member smaller must be 

bound to the smaller element.  The smaller element is e->smaller. 
 

void List::Remove(int key) { … } 



Programming II  class List (element implementation) 
CMSC 2613  Lecture 22 

 7 

List

largest

Element*

Element

keysmaller larger

intElement* Element*

MrBig

1

Element

smaller key larger

intElement* Element*

1024

Element

smaller key larger

intElement* Element*

512

Element

smaller key larger

intElement* Element*

List

largest

Element*

Element

keysmaller larger

intElement* Element*

MrBig

List

largest

Element*

(a) (b) (c)

Figure 9.  Diagram for the destructor ~List() 
 

Figure 10.  Member function ~List() 
List::~List() 
1. Member function Kill removes all elements on the list except the sentinel.  Figure 9 (a) shows the list 

before function Kill is called and Figure 9 (b) shows the list after the Kill returns.   
2. After all elements are removed except the sentinel, remove the sentinel also.  Figure 9 (c) shows the 

list after the sentinel has been removed. 
 
 
 
 

List::~List() 
{ Kill(largest->larger); 
 delete largest; 
} 



Programming II  class List (element implementation) 
CMSC 2613  Lecture 22 

 8 

 
 
 

List

largest

Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

keysmaller larger

intElement* Element*

MrBig

1

2

512

1024

e

Element*

p

Element*

List

largest

Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

keysmaller larger

intElement* Element*

MrBig

1

2

512

1024

e

Element*

p

Element*

List

largest

Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

smaller key larger

Element* int Element*

Element

keysmaller larger

intElement* Element*

MrBig

2

512

1024

e

Element*

p

Element*

(a) (b) (c)

Figure 11.  Diagram for member function Kill 
 

Figure 12.  Member function Kill 
void List::~Kill(Element* e) 
1. Parameter e  points to the smallest element when function Kill is called. 
2. The while-statement iterates through all elements on the list except the sentinel. 
3. After entering the body of the while-statement local variable p is assigned to point to the same element 

as parameter e.  Figure 11 (a) depicts the list just after the body of the while-statement has been entered 
and parameter e  points to the first element to be removed. 

4. Parameter e  is advanced to the next larger element as shown in Figure 11 (b) leaving local variable p to 
point to the smaller element. 

5. Local variable p is used to remove the element it points to as shown in Figure 11 (c). 
6. Local variable p goes out of scope at the end of the while-statement body. 
7. The foregoing process defined by steps 3 through 6 is repeated on all the remaining elements except 

the sentinel. 
 

void List::Kill(Element* e) { … } 
 


