Programming Il template class Queue (element implementation)
CMSC 2613 Lecture 21

struct QueueException { //Queue Exception
QueueException(char* m)
{ cout<<endl
cout << “l am the Queue and | am “<<m << “.”;
cout << endl;
}
template <class T>
class Queue {
struct Element {

Element* newer; //Points to the next newer element
T value; //Data value of type T queued
Element(T v):newer(0),value(v){}  //Constructor
b
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements on the queue.
void Kill([Element* e) //Reclaims storage for elements remaining on
{ while(e){ //the Q
Element* p=e;
e = e-> newer;
delete p;
} // end of while loop
} // end of Kill
public:
Queue():oldest(0),newest(0),count(0){} //Contructor

//Destructor

~Queue(){Kill(oldest);oldest=newest=0;count=0;}
bool IsEmpty(void){return count==0;} //Is the Queue empty?
bool IsFull(void) { return false; } //s the Queue full?
void Eng(T v) //Store value v on the newest end of the Queue
{ if (IsFull()) throw QueueException("full");

Element* e=new Element(v);

if (IsEmpty()) oldest=e; else newest->newer=e;

newest=e;

count++;
} // end of Enq

Figure 1. template class Queue (element implementation)



Programming Il template class Queue (element implementation)
CMSC 2613 Lecture 21

T Deg(void) //Remove and return the oldest value on the Q
{ if (IsEmpty()) throw QueueException("empty");
Element* e=oldest;
T v=e->value;
if (Length()==1) newest=0;
oldest=e->newer;
count--;
delete €;
returnv;
} // end of Deq
int Length(void){return count;} //Return the number of elements on the Queue

b

Figure 1. template class Queue (element implementation) (continued)



Programming Il template class Queue (element implementation)
CMSC 2613 Lecture 21

ifndef Queue_h
#define Queue_h 1
struct QueueException { //Queue Exception
QueueException(char* m)
{ cout<<endl
cout << “l am the Queue and l am “ << m << “.”;
cout << endl;
}
template <class T>
class Queue {
struct Element {

Element* newer; //Points to the next newer element
T value; //Data value of type T queued
Element(T v):newer(0),value(v){}  //Constructor
b
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements on the queue.
void Kill(Element* €) //Reclaims storage for elements remaining on

the{ while (e){
Element* p=e;
e = e-> newer;
delete p;
} // end of while loop
} // end of Kill
public:
Queue():oldest(0),newest(0),count(0){} //Contructor
//Destructor
~Queue(){Kill(oldest);oldest=newest=0;count=0;}
bool IsEmpty(void){return count==0;} //Is the Queue empty?
bool IsFull(void) { return false;}  //Is the Queue full?
void Eng(T v) //Store value v on the newest end of the Queue
{ if (IsFull()) throw QueueException("full");
Element* e=new Element(v);
if (IsEmpty()) oldest=e; else newest->newer=e;
newest=e;
count++;
} // end of Enq

Figure 2. File Queue.h



Programming Il template class Queue (element implementation)
CMSC 2613 Lecture 21

T Deg(void) //Remove and return the oldest value on the Queue
{ if (IsEmpty()) throw QueueException("empty");
Element* e=oldest;
T v=e->value;
if (Length()==1) newest=0;
oldest=e->newer;
count--;
delete €;
returnv;
} // end of Deq
int Length(void){return count;} //Return the number of elements on the Queue
b
#endif

Figure 2. File Queue.h (continued)

Example: Program p01 stores and retrieves the characters of string “Alan Turing” illustrating the
first-in-first-out character of a queue.

#include <jostream>

#include <iomanip>

#include <string>

using namespace std;

#include "Queue.h"

int main()

{ string t="Alan Turing";
Queue <char> Q;
for (int a=0;a<t.length();a++) Q.Enqg(t[a]);
cout << endl;
while (}Q.IsEmpty()) cout << Q.Deq();
cout << endl;
return 0;

Figure 3. File pOl.cpp

Program p01 prints:
Alan Turing



