
Programming II template class Queue (element implementation)
CMSC 2613 Lecture 21

 1

struct QueueException { //Queue Exception
 QueueException(char* m)

{ cout << endl;
cout << “I am the Queue and I am “ << m << “.”;
cout << endl;

}
template <class T>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T value; //Data value of type T queued
Element(T v):newer(0),value(v){} //Constructor

};
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements on the queue.
void Kill(Element* e) //Reclaims storage for elements remaining on
{ while (e) { //the Q

Element* p=e;
e = e-> newer;
delete p;

} // end of while loop
} // end of Kill

public:
Queue():oldest(0),newest(0),count(0){} //Contructor
 //Destructor
~Queue(){Kill(oldest);oldest=newest=0;count=0;}
bool IsEmpty(void){return count==0;} //Is the Queue empty?
bool IsFull(void) { return false; } //Is the Queue full?
void Enq(T v) //Store value v on the newest end of the Queue
{ if (IsFull()) throw QueueException("full");

Element* e=new Element(v);
if (IsEmpty()) oldest=e; else newest->newer=e;
newest=e;
count++;

} // end of Enq

Figure 1. template class Queue (element implementation)

Programming II template class Queue (element implementation)
CMSC 2613 Lecture 21

 2

T Deq(void) //Remove and return the oldest value on the Q
{ if (IsEmpty()) throw QueueException("empty");

Element* e=oldest;
T v=e->value;
if (Length()==1) newest=0;
oldest=e->newer;
count--;
delete e;
return v;

} // end of Deq
int Length(void){return count;} //Return the number of elements on the Queue

};

Figure 1. template class Queue (element implementation) (continued)

Programming II template class Queue (element implementation)
CMSC 2613 Lecture 21

 3

ifndef Queue_h
#define Queue_h 1
struct QueueException { //Queue Exception
 QueueException(char* m)

{ cout << endl;
cout << “I am the Queue and I am “ << m << “.”;
cout << endl;

}
template <class T>
class Queue {

struct Element {
Element* newer; //Points to the next newer element
T value; //Data value of type T queued
Element(T v):newer(0),value(v){} //Constructor

};
Element* oldest; //Points to the oldest element
Element* newest; //Points to the newest element
int count; //Records the number of elements on the queue.
void Kill(Element* e) //Reclaims storage for elements remaining on
the { while (e) {

Element* p=e;
e = e-> newer;
delete p;

} // end of while loop
} // end of Kill

public:
Queue():oldest(0),newest(0),count(0){} //Contructor

//Destructor
~Queue(){Kill(oldest);oldest=newest=0;count=0;}
bool IsEmpty(void){return count==0;} //Is the Queue empty?
bool IsFull(void) { return false; } //Is the Queue full?
void Enq(T v) //Store value v on the newest end of the Queue
{ if (IsFull()) throw QueueException("full");

Element* e=new Element(v);
if (IsEmpty()) oldest=e; else newest->newer=e;
newest=e;
count++;

} // end of Enq

Figure 2. File Queue.h

Programming II template class Queue (element implementation)
CMSC 2613 Lecture 21

 4

T Deq(void) //Remove and return the oldest value on the Queue
{ if (IsEmpty()) throw QueueException("empty");

Element* e=oldest;
T v=e->value;
if (Length()==1) newest=0;
oldest=e->newer;
count--;
delete e;
return v;

} // end of Deq
int Length(void){return count;} //Return the number of elements on the Queue

};
#endif

Figure 2. File Queue.h (continued)

Example: Program p01 stores and retrieves the characters of string “Alan Turing” illustrating the
first-in-first-out character of a queue.

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
#include "Queue.h"
int main()
{ string t="Alan Turing";
 Queue <char> Q;
 for (int a=0;a<t.length();a++) Q.Enq(t[a]);
 cout << endl;
 while (!Q.IsEmpty()) cout << Q.Deq();
 cout << endl;
 return 0;
}

Figure 3. File p01.cpp

Program p01 prints:
Alan Turing

