Programming |1 class Queue (list implementation)

CMSC 2613 Lecture20
Queue
oldest count newest
Element* int Element*
Element
Y newer
int Element*
A
Element
Y newer
int Element*
|
[ ]
 J
.
Element
Y newer |
int Element*

Figure1l. Queueimplemented using dynamically allocated elements.

Notesfor Figure 1.

1. class Queue has two data members, oldest and newest. Members oldest and newest point to the oldest
and newest elements on the queue respectively.

2. Elements are linked via member newer instruct Element. Elements are linked to permit the following
operations.
2.1. A new element can be placed on the newest end of the queue.
2.2. The oldest element can be removed.
2.3. Elements can be traversed from the newest element to the oldest element.

Member functions of struct Element:



Programming |1 class Queue (list implementation)
CMSC 2613 Lecture20

class Queue{

public:

struct Element {
Element* newer;
intv;
Element(int val);

h

Element* newest;

Element* oldest;

int count;

void Kill (Element* €);

Queug();

~Queue();

bool IsEmpty(void);
booal IsFull(void);
void Enq(int v);

int Deq(void);

int Length(void);

1

Figure 2. Specificationsfor class Queue.

Element(int val) - Function Element assigns the value of parameter val to member v. Function
Element assigns a NULL-value to member newer. The newest element terminates the list of element
on the queue.

Member functions of class Queue:

2.

Queue() - Function Queue creates an empty queue. Function Queue assigns a NUL L-value to pointers
to the oldest and newest elements on the queue. Member count is set to zero. Member newest points
to the most recently added element. Member oldest points to the element that has been on the queue
the longest.

~Queue() - Function ~Queue calls private member function Kill to free all dynamicaly allocated
elements on the queue. After function Kill reclaims storage member count is set to zero.

Kill — Function Kill removes all remaining elements on the queue. Function Kill traverses the queue
moving from the oldest element to the newest element. As each element is visited, it is deleted and
storageis reclaimed.

Eng - Function Eng creates a new element and inserts on the newest end of the queue.

Deq - Function Deq removes an element from the oldest end of the queue and returns the value in the
element to the caller.

IsEmpty - Function |SEmpty determinesif the queueis empty.

IsFull - Function IsFull determinesif the queueisfull.

Length - Function Length returns the number of elements on the queue.

Queue::Queue();

1. AssignaNULL pointer to member newest.
2. AssignaNULL pointer to member oldest.
3. Assign zero to member count.



Programming |1 class Queue (list implementation)
CMSC 2613 Lecture20

Notes for construction function Queue()

1. Recdl that a class and structure are essentially identical. The only difference between a class and a
structure is that members of a class are private by default and members of a structure are public by
default.

Queue::~Queue();

1. Kill the elements on the queue. Reset the count to zero.

void Queue::Kill(Element* e);
1. Parameter e pointsto the oldest element on the queue when member function Kill iscalled.
1.1. Does parameter e point to an element on the queue? If the answer is yes then perform steps 1.2
through 1.6. If the answer is no then perform step 2.
1.2. Create local variable p to point to the same element referenced by parameter e.
1.3. Make parameter e point to the next newer element.
1.4. Freethe element referenced by local variable p.
15. Repeat step 1.
2. Returntothecaller. The queueisempty.

Member function Kill notes:

1. Member function Kill is a private member function because only members of class Queue should be
permitted to remove every element on the queue.

2. Parameter e of function Kill points to the oldest member when it is called. Elements on the queue are
deleted traversing the queue from the oldest element to the newest element.

3. The while-statement determines if parameter e points to an element. The element of the queue
referenced by parameter e will be deleted. The loop defined by the while-statement terminates when
parameter e is assigned the NULL-value. Parameter e is assigned a NULL-value when the NULL-
value terminating the list in the newest element is assigned to parameter e by the statement

e=e->newer.

Elements on the queue are del eted using afour-step processillustrated in Figure 4.

3.1. Diagram 1 shows the queue as function Kill seesit before any elements have been deleted. Upon
entry to function Kill, parameter e pointsto the oldest element as shown in diagram 1.

3.2. Loca variable p is created in diagram 2. The oldest element is about to be deleted. Local
variable p is made to point to the oldest element al so.

3.3. Parameter e is moved to the next element to be deleted. This step is essential. If parameter e is
not moved to the next element, remaining elements will be lost. There is no way to access
remaining elements once the chain defined by member newer is broken. Please refer to diagram
3.

3.4. Storage is reclaimed. Local variable p goes out of scope at the end of the loop defined by the
while-statement. When a variable goes out of scope it is destroyed. Parameter e points to the
next element to be deleted. The process described above is repeated for every element on the
queue.

void Queue:: Enq(int v);

1. Throw exception QueueException if the queue is full. Note that function QueueException does not
return. Statements following this check depend on the queue having at |east one element.

2. Allocate anew element and assign a pointer to the new element to local variable e.

3. If the queueis empty assign a pointer to the element to member ol dest.

4. If the queue has one or more elements assign the pointer to the new element to member newer in the
element currently referenced by member newest.

5. Assign the pointer to the new element to member newest.

6. Increment the value of member count.



Programming |1 class Queue (list implementation)
CMSC 2613 Lecture20

Member function Enqg notes:

1

Member function Eng always places the new element at the newest end of the queue. Member newest
always points to the element that was most recently placed on the queue.

int Queue::Deq(void)

1

NSO ~WDN

Throw function QueueException if the queue is empty. Note that function QueueException does not
return. Statements following this check depend on the queue having at |east one element.

Assign apointer to the oldest element on the queue to local variablee.

Extract the value of member v from the oldest element on the queue and assign it to local variable v.

If there is exactly one element on the queue, assign aNULL value to member newest.

Assign the value of member newer in the oldest element on the queue to member oldest in the anchor.
Free the oldest member on the queue.

Decrement member count.

Return the value of local variablev.

bool Queue:: 1sEmpty(void)

1

The queue is empty if the value of member count is zero.

bool Queue:: IsFull(void)

1.

The queueis never full.

int Queue::Length(void)

1

Return the value of member count.



