
Programming II Lecture 19
CMSC 2613 Intermediate Simulation Mechanics

 1

1. Declare member data in class Sim.

1.1. Arrival related data

1.1.1. double arvt; //Mean time between arrivals: 1st parameter read 







λ
1

1.1.2. double arvr; // Arrival rate lambda (λ):
1.2. Service related data

1.2.1. double srvt; //Mean time between departures: 2nd parameter 







µ
1

1.2.2. double srvr; //Departure rate mu (µ):
1.3. Response time related data

1.3.1. double E_R; //Expected response time
λ

][
][

NE
RE = .

1.3.2. double Var_R; Response time variance:
λ

][
][

NVar
RVar =

1.3.3. double Sim_R; //Average response time for this simulation:
N

RTot _

1.3.4. double Tot_R; //Accumulated wait of the customers that were served
1.3.5. double Max_R; //Longest wait of any customer that was served

1.4. Line length related data
1.4.1. int N; //Number of customers served

1.4.2. double E_N; //Expected length of the line
ρ

ρ
−

=
1

][NE , Calculated mean line length

1.4.3. double Var_N; //Line length variance.
()21

][
ρ

ρ

−
=NVar

1.4.4. double Sim_N; //Average length of the line totallength/duration
1.4.5. int Max_N; //Longest line length in any interval
1.4.6. double Tot_N; //Sum of the products of line lengths multiplied by the time in line.

1.5. Simulation interval time related data
1.5.1. int Sim_L; //Simulation time limit: 3rd parameter. The duration of the simulation can be

no more than the value assigned to Sim_L. As a consequence, the actual duration of the
simulation, recorded in variable Sim_D, will always be less than Sim_L.

1.5.2. double Sim_D; //Duration of the simulation. The simulation terminates on the event that
is closest to simulation time limit, Sim_L. The value of Sim_D is computed by assigning
the time of the most recent event.

1.6. Traffic intensity

1.6.1. double rho; //
µ
λ

ρ = arvr/srvr, traffic intensity

Programming II Lecture 19
CMSC 2613 Intermediate Simulation Mechanics

 2

2. Code function prototypes and implementations of member functions.
2.1. Create the constructor Sim::Sim(); Initialize all member data to zero.
2.2. Create member function void Sim::Print(char* t,int v,char* u);
2.3. Create member function void Sim::Print(char* t,double v,char* u);
2.4. Create member function void Sim::Print(ostream& o);

2.4.1. Print the mean time between arrivals , arvt.
2.4.2. Print the arrival rate, 60*arvr, customers/hour.
2.4.3. Print the mean time between departures, srvt.
2.4.4. Print the departure rate, 60*srvr, customers/hour.
2.4.5. Print the expected response time, E_R.
2.4.6. Print the response time variance, Var_R.
2.4.7. Print the simulation response time, Sim_R.
2.4.8. Print the expected line length, E_N.
2.4.9. Print the line length variance, Var_N.
2.4.10. Print the simulation mean line length, Sim_N.
2.4.11. Print the number of “customers served,” N.
2.4.12. Print the simulation maximum response time, Max_R.
2.4.13. Print the simulation maximum line length, Max_N.

2.5. Create member function void Sim::Run(istream& i);
2.5.1. Read input parameters.

2.5.1.1. Read the mean time between arrivals, arvt 







λ
1

2.5.1.2. Read the mean time between departures, srvt 







µ
1

2.5.1.3. Read the simulation time limit Sim_L.
2.5.2. Compute data that are independent of the simulation.

2.5.2.1. Compute the arrival rate, arvr, λ
2.5.2.2. Compute the departure rate, srvr, µ

2.5.2.3. Compute the traffic intensity, rho,
µ
λ

ρ =

2.5.2.4. Compute the expected length of the line E_N,
ρ

ρ
−

=
1

][NE

2.5.2.5. Compute the expected response time, E_R,
λ

][
][

NE
RE =

2.5.2.6. Compute the line length variance, Var_N,
()21

][
ρ

ρ

−
=NVar

2.5.2.7. Compute the response time variance, Var_R,
λ

][
][

NVar
RVar =

2.5.3. Initialize the Event manager assigning λ and µ .
2.5.4. Assign zero to member Sim_D.
2.5.5. Loop forever

2.5.5.1. Obtain an occurrence of an event.
2.5.5.2. If the time of the occurrence exceeds the simulation limit, terminate the simulation
2.5.5.3. Compute the interval between the last event and this event.
2.5.5.4. Obtain the number of customers waiting on the queue.
2.5.5.5. Add the product of the number of customers waiting on the queue and the interval

between this event and the previous event to the running total of these products,
Tot_N. Member Tot_N is the weighted sum of the number of customers times the
amount time they waited in line. The sum of products recorded in Tot_N can be

Programming II Lecture 19
CMSC 2613 Intermediate Simulation Mechanics

 3

divided by the total time of the simulation, Sim_D, to find the weighted average of
how many people were waiting throughout the simulation. Consider the following
example.

Customers in line Time waited Product
1 5 5
2 3 6
4 1 4
1 1 1

Total 10 16

The average number of customers in line is

∑

∑

=

==
n

i
i

n

i
ii

t

tc
N

1

1 6.1
10
16

==

2.5.5.6. Update the computation for the maximum number of customers in line.
2.5.5.7. Record the time of this event in Sim_D.
2.5.5.8. Determine if the occurrence is an arrival or a departure and process accordingly.

2.5.6. Print the simulation duration, Sim_D.
2.6. Create member function void Sim::Arrival(int time);

2.6.1. if the queue is full return .
2.6.2. Put the current time, time , on the queue.

Programming II Lecture 19
CMSC 2613 Intermediate Simulation Mechanics

 4

2.7. Create member function void Sim::Departure(int time);
2.7.1. if the queue is empty return.
2.7.2. Find the response time, r, for this customer. ().DeqQtimer −= where Q.Deq() is the

time removed from the queue.
2.7.3. Add the response time, r, to the running total of all response times, Tot_R.
2.7.4. Compute the maximum response time, Max_R, by finding the maximum of Max_R and r.
2.7.5. Increment the total number of customers served, N.

3. Compute results obtainable by running the simulation.

3.1. Compute the simulation response time, Sim_R,
N

RTot
RSim

_
_ =

3.2. Compute the simulation mean line length, Sim_N,
DSim
NTot

NSim
_
_

_ =

