Programming Il template class Queue (array implementation)
CMSC 2613 Lecture 17

5

b
template <class 7>
class Queue {

struct QueueException { //Queue Exception

QueueException(char* m)

{ cout<<endl
cout << “l am the Queue and | am “ << m << “.”;
cout << endl;

}

int size; //Number of available elements

int count; //Number of occupied elements

int oldest; //Index of the oldest element

int newest; //Index of the newest element

™Q; //Points to storage for the Queue
public:

//

//Constructor, allocate storage

/l

Queue(int sz=100):size(sz),count(0),oldest(0),newest(-1){Q=new T[size];}

~Queue(){if (Q) delete[] Q;} //Destructor, reclaim storage

bool IsFull(void){return count>=size;} //1s the Queue full?

bool IsEmpty(void){return count<=0;} //1s the Queue empty?

void Eng(T v) //Put value v at the newest end of the Q

{ if (IsFull()) throw QueueException(“full”);
newest=(newest+1)%size;
Q[newest]=v;
count++;
}
T Deg(void) //Remove and return the oldest value
{ if (IsEmpty()) throw QueueException(“empty”); //on the Queue
T v=Q[oldest];
oldest=(oldest+1)%size;
count--;
returnvy;

Figure 1. template class Queue.




Programming Il
CMSC 2613

template class Queue (array implementation)
Lecture 17

Example: Program p01 stores and retrieves the characters of string “Alan Turing” illustrating the first-in-
first-out character of a queue.

#ifndef Queue_h

#define Queue_h 1

struct QueueException {
QueueException(char* m)

{

}
|5

cout << endl;
cout << “l am the Queue and | am “ << m << “.”;
cout << endl;

template <class 7>
class Queue {

int size; //Number of available elements

int count; //Number of occupied elements

int oldest; //Index of the oldest element

int newest; //Index of the newest element

™ Q; //Points to storage for the Queue
public:

/l

//Queue Exception

//Constructor, allocate storage

1/l

Queue(int sz=100):size(sz),count(0),oldest(0),newest(-1){Q=new T[size];}

~Queue(){if (Q) delete[] Q;}

bool IsFull{void){return count>=size;}
bool IsEmpty(void){return count<=0;}
void Enqg(T v)

{ if (IsFull()) throw QueueException(“full”);
newest=(newest+1)%size;
Q[newest]=v;
count++;
}
T Deq(void)
{ if (IsEmpty()) throw QueueException(“empty”);
T v=QJoldest];
oldest=(oldest+1)%size;
count--;
return v;
}
b
#tendif

//Destructor, reclaim storage

//\s the Queue full?

//1s the Queue empty?

//Put value v at the newest end of the Q

//Remove and return the oldest value
//on the Queue

Figure 2. File Queue.h



Programming Il template class Queue (array implementation)
CMSC 2613 Lecture 17

#include <iostream>

#tinclude <iomanip>

#include <string>

using namespace std;

#include "Queue.h"

int main()

{ string t="Alan Turing";
Queue <char> Q;
for (int a=0;a<t.length();a++) Q.Enqg(t[a]);
cout << endl;
while (1Q.IsEmpty()) cout << Q.Deq();
cout << end/;
return 0;

Figure 3. File pOl.cpp
Program p01 prints:
Alan Turing



