
Programming II template class Queue (array implementation)
CMSC 2613 Lecture 17

 1

Figure 1. template class Queue.

struct QueueException { //Queue Exception
 QueueException(char* m)

{ cout << endl;
cout << “I am the Queue and I am “ << m << “.”;
cout << endl;

}
};
template <class T>
class Queue {
 int size; //Number of available elements
 int count; //Number of occupied elements

int oldest; //Index of the oldest element
int newest; //Index of the newest element

 T* Q; //Points to storage for the Queue
public:

//---
//Constructor, allocate storage
//---

 Queue(int sz=100):size(sz),count(0),oldest(0),newest(-1){Q=new T[size];}
 ~Queue(){if (Q) delete[] Q;} //Destructor, reclaim storage
 bool IsFull(void){return count>=size;} //Is the Queue full?
 bool IsEmpty(void){return count<=0;} //Is the Queue empty?
 void Enq(T v) //Put value v at the newest end of the Q

{ if (IsFull()) throw QueueException(“full”);
newest=(newest+1)%size;
Q[newest]=v;
count++;

}
T Deq(void) //Remove and return the oldest value
{ if (IsEmpty()) throw QueueException(“empty”); //on the Queue

T v=Q[oldest];
oldest=(oldest+1)%size;
count--;
return v;

}
};

Programming II template class Queue (array implementation)
CMSC 2613 Lecture 17

 2

Example: Program p01 stores and retrieves the characters of string “Alan Turing” illustrating the first-in-
first-out character of a queue.

Figure 2. File Queue.h

#ifndef Queue_h
#define Queue_h 1
struct QueueException { //Queue Exception
 QueueException(char* m)

{ cout << endl;
cout << “I am the Queue and I am “ << m << “.”;
cout << endl;

}
};
template <class T>
class Queue {
 int size; //Number of available elements
 int count; //Number of occupied elements

int oldest; //Index of the oldest element
int newest; //Index of the newest element

 T* Q; //Points to storage for the Queue
public:

//---
//Constructor, allocate storage
//---

 Queue(int sz=100):size(sz),count(0),oldest(0),newest(-1){Q=new T[size];}
 ~Queue(){if (Q) delete[] Q;} //Destructor, reclaim storage
 bool IsFull(void){return count>=size;} //Is the Queue full?
 bool IsEmpty(void){return count<=0;} //Is the Queue empty?
 void Enq(T v) //Put value v at the newest end of the Q

{ if (IsFull()) throw QueueException(“full”);
newest=(newest+1)%size;
Q[newest]=v;
count++;

}
T Deq(void) //Remove and return the oldest value
{ if (IsEmpty()) throw QueueException(“empty”); //on the Queue

T v=Q[oldest];
oldest=(oldest+1)%size;
count--;
return v;

}
};
#endif

Programming II template class Queue (array implementation)
CMSC 2613 Lecture 17

 3

Figure 3. File p01.cpp
Program p01 prints:
Alan Turing

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
#include "Queue.h"
int main()
{ string t="Alan Turing";
 Queue <char> Q;
 for (int a=0;a<t.length();a++) Q.Enq(t[a]);
 cout << endl;
 while (!Q.IsEmpty()) cout << Q.Deq();
 cout << endl;
 return 0;
}

