Programming |1 class Queue (array implementation)
CMSC 2613 Lecturel16

Consider a queue implemented in an array. The queue in Figure 1 is used to represent a line of waiting
customers. Alice arrived first. Fantine arrived last. The customer that will be served next is called the
oldest because that customer has been in the line the longest. The customer that arrived most recently is
called newest.

C 1 z z 4 £ index

| aice | beth | carol | darla | eith | fantine]

oldest newest

Figure 1. Queue implemented as an array

Array indexes are printed above customer names. For example, Aliceisstored in element zero of the array.
Theindex of the oldest customer trails that of the newest customer when two or more customers arein line.
A customer is inserted onto the queue by incrementing the value of newest and storing the new customer in
the element of the array indexed by newest. Index variable newest always contains the index of the
customer that arrived most recently. A customer is deleted from the queue by removing the ol dest customer
from the queue and incrementing the value of oldest. Index variable oldest always contains the index of the
customer that has been waiting in line the longest.

The problem with implementing a queue as an array is that arrays have finite length.

K 4 5 6 7 8 index

| edith |fantine| grace| helen | |

oldest newest
Figure2. Queuein progress
As customers are served their elements in the array become available for arriving customers. By changing

our perspective, so that the array is viewed as a circle, the elements of the array containing departed
customers can now be reused.

4)

Figure 3. Circular array implementation of a queue

Programming |1 class Queue (array implementation)
CMSC 2613 Lecturel16

In the queue of Figure 3, alice, beth, carol, and darla have been served. We wish to reuse the space
occupied by those customers who have departed.

It appears that element zero (0) follows element seven (7).

By using modulo arithmetic, we can make indexes oldest and newest follow each other around the circular
queue of Figure 3.

newest=(newest+1)% size;
oldest=(oldest+1)% size;

Define size to be the number of elementsin the array used to implement the queue.

The discussion thus far hasincluded only a single instance of aqueue. A fully functional abstract datatype
needs to the ability to create and destroy queues.

queue

newest oldest q size count
int int int* int int

size-l 0 SIZE 0

size-l
Figure4. Queueimplemented as adynamically allocated array.

Functions:
1. Constructor - Function Queue assigns initial values to private members of class Queue. Function
Queue also allocates storage for elements of the queue.

Member newest contains the index of the most recently added value.
Member oldest contains the index of the value that has been on the queue the longest.

Member q is the array used to implement the queue. Technically, member q is a pointer to a value on
the queue.

Member size contains the number of elementsin array q.

Member count contains the number of elements on the queue.

2. Destructor — Function ~ freesthe dynamically allocated array used to implement the queue.

3. Member function Eng - Function Eng inserts avalue on the newest end of the queue.

4. Member function Deq - Function Deq removes a value from the oldest end of the queue and returns it
to the caller.

5. Member function IsEmpty - Function IsEmpty determinesif the queue is empty.

6. Member function IsFull - Function IslsFull determinesif the queueisIsFull.

7. Member function Length - Function Length returns the number of elementsin the queue.

Programming |1 class Queue (array implementation)
CMSC 2613 Lecturel16

Queue::Queue(int sz)

1

2,
3.

4.
5.

Assign one less than the size of the array used to implement the queue to member newest. The first
value on the queue isinserted in element zero.

Assign zero to member oldest. The first value removed from the queueisin element zero.

Allocate an array to implement the queue. Assign the pointer to the array to member g. There are sz
elementsin the array. Each element in the array is an integer.

Assign input parameter sz to member size.

Assign zero to member count. The queueis empty.

Queue::~Queue()

1

Freethe array whose addressisin member q if storage has been assigned to member g.

void Queue:: Enq(int v)

1

2
3.
4.

Throw exception QueueException if the queue is IsFull. Note that QueueException does not return.
Statements following this check depend on the queue having at |east one free element.

Increment the value of member newest using modul o arithmetic.

Increment the value of member count.

Assign the value of input parameter v to that element of member g indexed by member newest.

int Queue::Deq(void)

1

2.
3.
4.

Call function QueueException if the queue is empty. Note that QueueException does not return.
Statements following this check depend on the queue having at |east one element.

Increment the value of member oldest using modul o arithmetic.

Decrement the value of member count.

Return that element of member q indexed by member oldest.

int Queue::IsEmpty(void)

1

The queueis empty if the value of member count is zero.

int Queue::IsFull(void)

1

The queueis IsFull if the value of member count is greater than or equal to member size.

int Queue::Length(void)

1

Return the value of member count.

struct QueueException {

h

1

QueueException(char* m)

{ cout<<end;
cout << “Thequeueis” << m<<*“.”;
cout <<endl;

Write the val ue of the string reference by input parameter mto stream cout.

Programming |1 class Queue (array implementation)
CMSC 2613 Lecturel16

