
Programming II  class Queue (array implementation) 
CMSC 2613  Lecture 16 

 1 

Consider a queue implemented in an array.  The queue in Figure 1 is used to represent a line of waiting 
customers.  Alice arrived first.  Fantine arrived last.  The customer that will be served next  is called the 
oldest because that customer has been in the line the longest.  The customer that arrived most recently is 
called newest. 

Figure 1.  Queue implemented as an array 
 
Array indexes are printed above customer names.  For example, Alice is stored in element zero of the array.  
The index of the oldest customer trails that of the newest customer when two or more customers are in line.  
A customer is inserted onto the queue by incrementing the value of newest and storing the new customer in 
the element of the array indexed by newest. Index variable newest always contains the index of the 
customer that arrived most recently. A customer is deleted from the queue by removing the oldest customer 
from the queue and incrementing the value of oldest. Index variable oldest always contains the index of the 
customer that has been waiting in line the longest. 
 
The problem with implementing a queue as an array is that arrays have finite length. 
 

Figure 2.  Queue in progress 
 
As customers are served their elements in the array become available for arriving customers.  By changing 
our perspective, so that the array is viewed as a circle, the elements of the array containing departed 
customers can now be reused. 
 
 

Figure 3.  Circular array implementation of a queue 
 

alice beth carol darla edith fantine

0 1 2 3 4 5

oldest newest

index

oldest newest

edith fantine grace helen

4 5 6 7 8 index3

a lice

beth
carol

darlaedith

fant ine

gr
ac

e

helen

newest

oldest

0

1
2

34

5
6

7



Programming II  class Queue (array implementation) 
CMSC 2613  Lecture 16 

 2 

In the queue of Figure 3, alice, beth, carol, and darla have been served.  We wish to reuse the space 
occupied by those customers who have departed.   
 
It appears that element zero (0) follows element seven (7). 
 
By using modulo arithmetic, we can make indexes oldest and newest follow each other around the circular 
queue of Figure 3. 
 

newest=(newest+1)% size; 
oldest=(oldest+1)% size; 

 
Define size to be the number of elements in the array used to implement the queue. 
 
The discussion thus far has included only a single instance of a queue.  A fully functional abstract data type 
needs to the ability to create and destroy queues. 
 

Figure 4.  Queue implemented as a dynamically allocated array. 
 
Functions: 
1. Constructor - Function Queue assigns initial values to private members of class Queue.  Function 

Queue also allocates storage for elements of the queue.  
 
Member newest contains the index of the most recently added value. 
 
Member oldest contains the index of the value that has been on the queue the longest. 
 
Member q is the array used to implement the queue.  Technically, member q is a pointer to a value on 
the queue. 
 
Member size contains the number of elements in array q. 
 
Member count contains the number of elements on the queue. 

2. Destructor – Function ~ frees the dynamically allocated array used to implement the queue.  
3. Member function Enq -  Function Enq inserts a value on the newest end of the queue. 
4. Member function Deq - Function Deq removes a value from the oldest end of the queue and returns it 

to the caller. 
5. Member function IsEmpty - Function IsEmpty determines if the queue is empty. 
6. Member function IsFull - Function IsIsFull determines if the queue is IsFull. 
7. Member function Length - Function Length returns the number of elements in the queue. 
 

queue

newest oldest q countsize

int int int* int int

0

1

size-1

size-1 0 SIZE 0



Programming II  class Queue (array implementation) 
CMSC 2613  Lecture 16 

 3 

Queue::Queue(int sz) 
1. Assign one less than the size of the array used to implement the queue to member newest.  The first 

value on the queue is inserted in element zero. 
2. Assign zero to member oldest.  The first value removed from the queue is in element zero. 
3. Allocate an array to implement the queue.  Assign the pointer to the array to member q.  There are sz 

elements in the array.  Each element in the array is an integer. 
4. Assign input parameter sz to member size . 
5. Assign zero to member count.  The queue is empty. 
 
Queue::~Queue() 
1. Free the array whose address is in member q if storage has been assigned to member q. 
 
void Queue::Enq(int v) 
1. Throw exception QueueException if the queue is IsFull.  Note that QueueException does not return.  

Statements following this check depend on the queue having at least one free element. 
2. Increment the value of member newest using modulo arithmetic. 
3. Increment the value of member count. 
4. Assign the value of input parameter v to that element of member q indexed by member newest. 
 
int Queue::Deq(void) 
1. Call function QueueException if the queue is empty.  Note that QueueException does not return.  

Statements following this check depend on the queue having at least one element. 
2. Increment the value of member oldest using modulo arithmetic. 
3. Decrement the value of member count. 
4. Return that element of member q indexed by member oldest. 
 
int Queue::IsEmpty(void) 
1. The queue is empty if the value of member count is zero. 
 
int Queue::IsFull(void) 
1. The queue is IsFull if the value of member count is greater than or equal to member size. 
 
int Queue::Length(void) 
1. Return the value of member count. 
 
struct QueueException { 

QueueException(char* m) 
{ cout << endl; 

cout << “The queue is “ << m << “.”; 
cout << endl; 

} 
 
}; 
1. Write the value of the string reference by input parameter m to stream cout. 
 



Programming II  class Queue (array implementation) 
CMSC 2613  Lecture 16 

 4 

 
 


